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ABSTRACT

Since the success of obtaining the capacity (i.e. the maximal achievable transmission rate

under which the message can be recovered with arbitrarily small probability of error) for non-

feedback point-to-point communication channels by C. Shannon (in 1948), Information Theory

has been proved to be a powerful tool to derive fundamental limitations in communication

systems. During the last decade, motivated by the emerging of networked systems, information

theorists have turned lots of their attention to communication channels with feedback (through

another channel from receiver to transmitter). Under the assumption that the feedback channel

is noiseless, a large body of notable results have been derived, although much work still needs

to be done. However, when this ideal assumption is removed, i.e., the feedback channel is noisy,

only few valuable results can be found in the literature and many challenging problems are still

open.

This thesis aims to address some of these long-standing noisy feedback problems, with

concentration on the channel capacity. First of all, we analyze the fundamental information

flow in noisy feedback channels. We introduce a new notion, the residual directed information,

in order to characterize the noisy feedback channel capacity for which the standard directed

information can not be used. As an illustration, finite-alphabet noisy feedback channels have

been studied in details. Next, we provide an information flow decomposition equality which

serves as a foundation of other novel results in this thesis.

With the result of information flow decomposition in hand, we next investigate time-varying

Gaussian channels with additive Gaussian noise feedback. Following the notable Cover-Pombra

results in 1989, we define the n-block noisy feedback capacity and derive a pair of n-block upper

and lower bounds on the n-block noisy feedback capacity. These bounds can be obtained by

efficiently solving convex optimization problems. Under the assumption of stationarity on the

additive Gaussian noises, we show that the limits of these n-block bounds can be characterized
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xii

in a power spectral optimization form. In addition, two computable lower bounds are derived

for the Shannon capacity.

Next, we consider a class of channels where feedback could not increase the capacity and

thus the noisy feedback capacity equals to the non-feedback capacity. We derive a necessary

condition (characterized by the directed information) for the capacity-achieving channel codes.

The condition implies that using noisy feedback is detrimental to achievable rate, i.e, the

capacity can not be achieved by using noisy feedback.

Finally, we introduce a new framework of communication channels with noisy feedback

where the feedback information received by the transmitter is also available to the decoder with

some finite delays. We investigate the capacity and linear coding schemes for this extended

noisy feedback channels.

To summarize, this thesis firstly provides a foundation (i.e. information flow analysis) for

analyzing communications channels with noisy feedback. In light of this analysis, we next

present a sequence of novel results, e.g. channel coding theorem, capacity bounds, etc., which

result in a significant step forward to address the long-standing noisy feedback problem.
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CHAPTER 1. INTRODUCTION

1.1 Background and Motivation

Nowadays the widespread availability of large communication networks is allowing unprece-

dented interactions among the communicating nodes and pointing at interactive communica-

tions systems. These systems constantly affect each other via exchanging information over the

available communication links. This dynamic, interactive aspect of communication is common

to many networked systems, from social networks to biological networks. Unfortunately the

success of Information Theory has mostly pertained to unidirectional point-to-point communi-

cation systems and most of the traditional information theory results do not help in addressing

these interacting networked problems, since they do not handle the causality and real-time

constraints of networked systems. Clearly, these new problems require a multidisciplinary ap-

proach, which relies on new information theory concepts, utilizes the rich knowledge of the

control of uncertain system and adopts the new advances in optimization methods. One key

problem, which is the focus of this thesis, is the study of simple interacting communication

systems where two systems, the encoder and the decoder, exchange information over noisy

forward and feedback channels.

Unfortunately, the current feedback information theory mostly assumes a noiseless feedback

channel. Using noiseless feedback provides a plenty of benefits as summarized below:

1. Increase the capacity of communications channels with memory;

2. Significantly simplify the encoding/decoding structure;

3. Improve the decaying rate of the probability of decoding error.
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However, the assumption of noiseless feedback in communication systems has long been rec-

ognized as the Achilles heel of the information-theoretic study of feedback (Draper and Sahai

(2008)). Lucky (1973) stated it:

feedback communications was an area of intense activity in 1968... A number of authors

had shown constructive, even simple, schemes using noiseless feedback to achieve Shannon-like

behavior... The situation in 1973 is dramatically different... The subject itself seems to be a

burned out case... In extending the simple noiseless feedback model to allow for more realistic

situations, such as noisy feedback channels, bandlimited channels, and peak power constraints,

theorists discovered a certain brittleness or sensitivity in their previous results.

Up to present, the “noisy feedback” problem is still open and is considered as a bottleneck in

the development of Information Theory. As we known, in most interacting networked systems,

the feedback channel is inevitably noisy. To get over the feedback noise such that the theoretical

“noiseless” assumption holds, in current industry applications, as an example, the intensive

error-correcting code is widely used in the feedback channel. This implementation definitely

requires high transmission power and allows limited transmission rate in the feedback. The lack

of a mathematical theory in noisy feedback communications is considered to be an obstruction

in further industrial development in the field of wireless communications. By using noisy

feedback, do we still have the aforementioned benefits? If yes, how much can we obtain from

it? If no, why?

Besides the motivation arising from the development of Information Theory, the incomplete

unified theory of feedback control and communications with feedback triggers the thesis as well.

In this decade, some pioneer researchers have successfully applied control system ideas and

results to develop analysis and design tools for communication systems with noiseless feedback.

See Elia (2004); Liu et al. (2004a,b); Liu and Elia (2005, 2006) and reference therein. The

approaches carried out from a control theory perspective provide a novel avenue (compared

with the approaches produced by information theorists) to discover the fundamental benefits

of using feedback. As an illustration, Elia (2004) has shown the equivalence between feedback
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stabilization over a communication channel and communication with noiseless feedback. One

impressive consequence of this equivalence is that we can use many results and controller design

methods from control theory to analyze and design communication systems with noiseless

feedback. To the best knowledge of mine, however, no literature has extended this work to the

noisy feedback case due to many theoretic difficulties. One main difficulty is due to the non-

classical information pattern, addressed by Witsenhausen (1968) in his famous counterexample.

In particular, it is due to the loss of coordination between the feed-forward encoder/controller

and the feedback encoder/controller in the noisy feedback system.

1.2 Literature Review: Communication Systems with Feedback

The literature review will proceed from two aspects where most of the relevant work has

been done by two distinguished group of researchers in the last decade. Both of these aspects

trigger the work on communication systems with noisy feedback in this thesis.

1.2.1 Feedback Control with Communication Constraints

Researchers in control theory community have been doing the study of problems connected

to the presence of communication channels in feedback control systems. Wong and Brockett

(1999); Tatikonda and Mitter (2000); Tatikonda (2000); Nair and Evans (2000); Matveev and

Savkin (2001); Sahai (2001); Elia and Mitter (2001); Elia (2002, 2003); Baillieul (2002) are a

few of the earlier publications in this area. In the study of the interaction and integration of

communication and control, important questions pertain to the benefits of feedback in com-

munication systems. As the literature is vast, in what follows, we have a brief discussion on

one research direction which is related to the results in this thesis. This direction invokes the

idea of viewing the feedback communication system as a control system and then utilizes the

mature control theory to address many long-standing problems in feedback communication. As

a well-known pioneer work in this direction, Tatikonda (2000); Tatikonda and Mitter (2009)

proposed a unified view of feedback control and feedback information theory. Specifically, they

extended Dobrushin’s idea of treating the feedback communication systems as inter-connections
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of stochastic kernels, and then proved that the feedback capacity of communication channels

with noiseless feedback can be characterized as the supremum of directed information rate

(introduced by Massey (1990)) from the channel inputs to the channel outputs. In addition,

Tatikonda and Mitter (2009) reformulated the optimization problem of computing the multi-

letter feedback capacity as a stochastic control problem, and developed a dynamic programming

solution to compute the finite-horizon feedback capacity.

Sahai (2001, 2006) observed the insufficiency of Shannon capacity while communicating

delay-sensitive information streams over general noisy communication channels. The informa-

tion streams may include non-stationary, non-ergodic sources. Motivated by this observation,

a fundamental theory, anytime information theory, was proposed, which is closely related to

the control problem of tracking unstable sources over noisy channels. Briefly speaking, anytime

capacity, corresponding to moment stability of the associate control systems, is stronger than

the Shannon capacity, corresponding to almost sure stability of the associated control system.

For Gaussian channels, anytime capacity equals the Shannon capacity since the moment sta-

bility is equivalent to almost sure stability.

Elia (2004) established the general equivalence between reliable feedback communication

and feedback stabilization over Gaussian channels with noiseless feedback. By taking additive

white Gaussian noise(AWGN) channel into account, the celebrated Schalkwijk-Kailath(SK)

coding scheme (for reliable communication) is nothing but a rewrite of the stabilization of a

special linear quadratic Gaussian (LQG) system. In particular, Elia proved that the trans-

mission rate over the channel (characterized by the directed information) equals the degree of

instability of the open-loop system (characterized by the unstable eigenvalues of the systems).

Yang et al. (2005) applied the stochastic control formulation to compute the feedback ca-

pacity for a discrete-input finite-state Markov channel, which is characterized by the directed

information rate. They also obtained the optimal input distribution to the channel, which

has the Markov property, and thus reduced the infinite-horizon stochastic control optimization

problem to a tractable one.

Motivated by the work listed above, Liu (2006) addressed the problem of identifying the

limits of Gaussian channels with noiseless feedback from a unified perspective. In particu-
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lar, Liu and Elia established a general equivalence among feedback communication, estimation,

and feedback stabilization over the feedback Gaussian channels. The achievable communication

rates in the feedback communication problems can be alternatively obtained by the decay rates

of the Cramer-Rao bounds in the associated estimator problems or by the Bode sensitivity in-

tegrals in the associated control problem. In light of this fundamental equivalence, they showed

the optimality of the Kalman filtering algorithm in feedback communication, estimation, and

feedback control. We refer the interested readers to Liu et al. (2004b,a); Liu and Elia (2005)

for more details.

1.2.2 Feedback Information Theory

Information theorists since Shannon have been interested in the effect of feedback on the

theoretical transmission rate limits achievable by a communication channel, e.g. Schalkwijk and

Kailath (1966); Schalkwijk (1966, 1968); Cover and Pombra (1989); Pombra and Cover (1994);

Butman (1969); Ozarow (1984); Ozarow and Leung (1984); Kramer (2002b); Shahar-Doron

and Feder (2004); Yang (2004, 2007); Permuter et al. (2009); Shayevitz and Feder (2011). The

literature review in this section focuses on the point-to-point communications with feedback as

the multi-terminal case is out of the scope of this thesis.

Shannon (1958) first looked into communications with feedback, and proved a notable re-

sult that feedback could not increase capacity of discrete memoryless channels (DMCs). How-

ever, by explictly proposing a feedback communication scheme (e.g. Schalkwijk and Kailath

(1966); Schalkwijk (1966)), it is found that feedback can greatly decrease the complexity of

encoders/decoders and improve other performance measures like the decay of the probability

of decoding errors.

As a sequential work, Butman (1969) showed that feedback increases capacity for the first-

order autoregressive channels. Then Tiernan and Schalkwijk (1974) provided upper bounds

on the capacity of band-limited first-order Gaussian autoregressive channels with noiseless

feedback under an average energy constrain. Butman (1976) achieved tighter bounds on the

capacity of general m-th order gaussian autoregressive channels with linear feedback. Moti-

vated by these notable work on memory Gaussian channels, Cover and Pombra (1989) proposed
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an n-block capacity on Gaussian channels with noiseless feedback where the additive noise is

assumed to be time-varying/arbitrary Gaussian. In the same paper, they characterized this

n-block feedback capacity in a matrix optimization form. Vandenberghe et al. (1998) showed

that this matrix optimization problem can be transformed into a convex form and efficiently

solved by semi-definite programming (SDP). Moreover, based on the capacity characterization,

Cover and Pombra (1989) showed that the feedback could not increase the capacity by half bit,

which is an complementary result to the one derived by Ebert (1970), saying, feedback could

not increase the capacity by factor two compared with the non-feedback capacity. This result

was further refined in Dembo (1989) and Chen and Yanagi (1999). Although the n-block feed-

back capacity is explicitly characterized, evaluate its asymptotic value (i.e. block length goes

to infinity) is notoriously difficult. Kim (2010) characterized this asymptotic value in the form

of power spectral optimization by assuming the stationarity on Gaussian noise. However, this

single infinite dimensional optimization problem is still difficult to solve except the first-order

autoregress moving averaging (i.e. ARMA(1)) channel. We refer to Elias (1956, 1967); Wol-

fowitz (1975); Ihara (1980, 1988); Ozarow (1990a,b); Ihara (1990, 1994) and reference therein

for other related work on feedback Gaussian channels.

Although it was not clearly mentioned in the above feedback Gaussian literature, the di-

rected information proposed by Massey (1990) is the measure for the feedback capacity and the

feedback Gaussian capacity is nothing but the characterization on the directed information. In

light of the directed information, researchers turned to investigate other interesting channels

and characterized their capacities. We list a few of them as follows. Kim (2008) provided a

channel coding theorem for feedback channel with finite memory, in other words, the current

channel output is the function of the current and past m symbols from the channel inputs and

the stationary ergodic channel noise. Tatikonda and Mitter (2009) provide a channel coding

theorem for finite-alphabet channel with arbitrary noises by extending Verdú and Han’s work

on the general non-feedback channel capacity (Verdú and Han (1994)). Permuter et al. (2009)

investigated the capacity of finite state channels with time-invariant deterministic feedback by

extending Galleger’s idea of characterizing the capacity of finite state non-feedback channels

(Gallager (1968)). We remark, again, that all these results were obtained by characterizing the
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directed information for corresponding channels with noiseless feedback.

As it is shown above, all these work assumed that the feedback is noiseless, which is not

the case in most practical scenarios. Unfortunately, until present, only few papers have studied

communication channels with noisy feedback. We briefly classify the results in the literature

into two main categories. The first category studies the usefulness of noisy feedback by inves-

tigating reliability functions and error exponents. See Draper and Sahai (2006b); Kim et al.

(2007); Burnashev and Yamamoto (2008). The second category (Omura (1968); Lavenberg

(1971); Martins and Weissman (2008); Chance and Love (2010); Kumar et al. (2009),Zhang

and Guo (2011)) focuses on the derivation of coding schemes mostly for additive Gaussian

channels with noisy feedback based on the well-known SK scheme (Schalkwijk and Kailath

(1966)). Motivated by these few fragmented results in the literature, we herein wish to provide

a comprehensive mathematical theory of communication channels with noisy feedback.

1.3 Thesis Contributions

The main results of the thesis are summarized as follows.

1. To comprehensively analyze/understanding the noisy feedback problem, we first investi-

gate the information flow in noisy feedback channels. We propose a new concept, residual

directed information, in order to capture the capacity of noisy feedback channels. Next,

we derive a fundamental equality, information flow decomposition equality, as a basis of

all the other results in the thesis.

2. As the first application of the new concept and the information flow equality, we provide

a channel coding theorem and bounds for the capacity of finite-alphabet communication

channels with noisy feedback. Then we consider a specific class of channels, finite-state

finite-alphabet channels, and provide upper bounds on the capacity.

3. We study time-varying Gaussian channels with additive Gaussian noise feedback. We

extend the well-known result of Cover-Pombra on noiseless feedback Gaussian channels to

noisy feedback settings. First of all, we define the n-block noisy feedback capacity and then

derive a pair of n-block upper and lower bounds on the n-block capacity. These bounds
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can be obtained by solving convex optimization problems. Next, under the assumption

that the additive Gaussian noises are stationary, we prove that the limits of the upper and

lower bounds exist and can be characterized in a form of power spectral optimization,

thus providing bounds on the asymptotic Shannon capacity. Finally, two computable

lower bounds on Shannon capacity are provided.

4. We provide a necessary condition on the capacity-achieving channel codes of noisy feed-

back channels. For a special class (e.g. DMC) of channels where the noisy feedback

capacity is equal to the non-feedback capacity, this condition implies that using noisy

feedback is detrimental to achievable rate, i.e., could not achieve the capacity.

5. As an initial looking-forward work, we consider a new framework of communication chan-

nels with noisy feedback where the feedback information received by the encoder is also

available to the decoder with some finite delays. We first show that the feedback capacity

can be characterized in terms of the causal conditioning directed information. Then we

propose a specific linear coding scheme with good transmission rate for Gaussian channels

under the new framework.

We remark that the first result of information flow analysis is the root of the thesis and induces

all the rest of results mentioned above.

1.4 Thesis Outline

Chapter 1 provides the background and motivations of the study on communication chan-

nels with noisy feedback. In addition, we review the relevant literature on networked control

systems with communication constraints and information theory of communications with feed-

back, and outline the thesis.

Chapter 2 presents relevant preliminary results on communications with noiseless feedback,

which provide hints and serve as useful tools to adress the noisy feedback problem.

Chapter 3 studies the information flow in communication channels with noisy feedback. Dif-

ferent from the non-feedback and noiseless feedback settings, the directed information flowing

from the channel inputs to the channel outputs does not deliver the message at full usage. We
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derive an information flow decomposition equality which reveals the information flow pattern

in noisy feedback channels. Namely, there exist three information flows in the forward channel:

message-delivery flow, feedback-noise-delivery flow, and the interference flow between these two

flows. In addition, we propose a new concept, residual directed information, to capture the

message-delivery flow in a compact form.

Chapter 4 considers finite-alphabet communication channels with noisy feedback. We ex-

tend the idea of Tatikonda and Mitter, characterizing the capacity of finite-alphabet channels

with noiseless feedback, to our noisy feedback settings, and prove a channel coding theorem

characterized by the residual directed information. We next investigate the finite-state chan-

nels with noisy feedback and provide an upper bound on the capacity. Chapter 5 studies

Gaussian channels with additive Gaussian noise feedback. We begin with arbitrary additive

Gaussian noises and define the n-block noisy feedback capacity, which has operational meaning

as n → ∞. In light of the information flow analysis, we derive an upper bound on the n-

block capacity which can be characterized in a convex form and then can be obtained by using

standard technical optimization tools. As a counterpart, we use a novel approach to derive

an lower bound on the n-block capacity which is characterized in a convex form as well. This

lower bound is not restricted to any specific coding scheme and holds for any additive Gaussian

noises. In order to find bounds on the Shannon capacity defined in asymptotic fashion, we

assume that the additive Gaussian noises are stationary. We then prove the limits of the upper

and lower bounds exist and can be characterized in a form of power spectral optimization.

Finally, two approaches of computing lower bounds on the Shannon capacity are provided.

Chapter 6 provides a necessary condition on the capacity-achieving channel codes of noisy

feedback channels, by utilizing the information flow analysis. As it is known, although feed-

back increases channel capacity in general, it does not for certain class of channels, e.g., discrete

memoryless channels (DMCs). We denote this class of channels as feedback-unfavorable chan-

nels. Then the derived necessary condition for feedback-unfavorable channels indicates that any

capacity-achieving channel code has to discard feedback information in order to use channel at

its full capacity.

Chapter 7 introduces a new framework of communication channels with noisy feedback



www.manaraa.com

10

where the feedback information received by the transmitter is also available to the decoder

with some finite delays. The merits of this new framework are demonstrated by two aspects:

1) Its capacity can be characterized by the causal conditioning directed information. As an

illustration, we characterize the n-block capacity of Gaussian noisy feedback channels under

our new framework and propose an iteration algorithm to obtain a lower bound; 2) By con-

structing a specific linear coding scheme for the first-order moving average Gaussian channels

with intermittent(erasure) feedback, we show that the new framework allows linear feedback

coding schemes with positive transmission rate, which is (in certain regime) much larger than

the non-feedback Gaussian channel capacity.

Chapter 8 concludes the thesis and provides some avenues for future research.

1.5 Notations

Uppercase and corresponding lowercase letters (e.g.Y, Z, y, z) denote random variables and

realizations, respectively. The probability distribution of random variables is denoted by only

p when the arguments of p specify the distribution. For example, the value pXY (x, y) of the

joint distribution pXY of the random variables X and Y is written simply as p(x, y).

We consider only positive integer subscripts for symbols. For simplicity of notation, we

sometimes allow non-positive subscripts, which refers to an empty symbol. For example,

XnY n−1 for n = 1 is equivalent to X1 as Y 0 = ∅.

xn represents the vector [x1, x2, · · · , xn]T and x0 = ∅. In represents an n×n identity matrix.

Kn � 0 (Kn � 0) denotes that the n × n matrix Kn is positive definite (semi-definite). log

denotes the logarithm base 2 and 0 log 0 = 0. The expectation operator over X is presented as

E(X).
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CHAPTER 2. PRELIMINARIES

In this chapter we present some mathematical preliminaries which we will be using enroute

to deriving our results.

2.1 Entropy, Mutual Information and Causal Conditioning Entropy

2.1.1 Entropy and Mutual Information

We first introduce a well known concept, entropy, which is a measure of the uncertainty of

a random variable.

Definition 1 (Entropy)(Cover and Thomas (2006)) Let X be a discrete random variable with

alphabet X and probability mass function p(x) = Pr(X = x), x ∈ X . The entropy H(X) is

defined by

H(X) = −
∑
x∈X

p(x) log p(x),

and H(X) ≥ 0.

If X is a continuous random variable, we have another concept of differential entropy.

Definition 2 (Differential Entropy) Let X be a continuous random variable with support set

S and probability density function is denoted by f(x). The differential entropy h(X) is defined

by

h(X) = −
∫
S
f(x) log f(x)dx.

We now recall a useful lemma on the differential entropy as follows.

Lemma 3 Let a random vector Xn ∈ Rn have zero mean and covariance Kx,n = EXnXnT

(i.e. Kx,n(i, j) = EXiXj, 1 ≤ i, j ≤ n). Then

h(Xn) ≤ 1

2
log(2πe)n det Kx,n
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with equality if and only if Xn ∼ N (0,Kx,n).

Definition 4 The mutual information I(X;Y ) between two discrete random variables with a

joint probability mass function p(x, y) and marginal probability mass function p(x) and p(y) is

defined by

I(X;Y ) =
∑

x∈X ,y∈Y
p(x, y) log

p(x, y)

p(x)p(y)
dxdy = H(Y )−H(Y |X),

and the mutual information density is defined by

i(X;Y ) = log
p(X,Y )

p(X)p(Y )

Similarly, the mutual information I(X;Y ) between two continuous random variables with joint

density f(x, y) is defined as

I(X;Y ) =

∫
f(x, y) log

f(x, y)

f(x)f(y)
dxdy = h(Y )− h(Y |X).

and the mutual information density is defined by

i(X;Y ) = log
f(x, y)

f(x)f(y)
.

The mutual information is of ultimate importance in information theory. It is a measure of

the amount of information that one random variable contains about the other random variable.

As it is shown, it can be also interpreted as the reduction of the uncertainty of one random

variable given the knowledge of the other.

In the following context of this section, we restrict ourself to the definitions/results of

discrete random variables as the definitions/results of continuous random variables directly

follow in parallel.

2.1.2 Causal Conditioning Entropy

Consider a time-ordered random variable sequence (Xn, Y n) as follows,

X1, Y1, X2, Y2, · · · , Xn−1, Yn−1, Xn, Yn. (2.1)

We first define the causal conditioning probability as

p(yn||xn) =
n∏
i=1

p(yi|xi, yi−1).
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Definition 5 The entropy of a sequence of discrete random variables Y n, causally conditioning

on a sequence of discrete random variables Xn is defined by

H(Y n||Xn) = Ep(Xn,Y n) log p(Y n||Xn) =
n∑
i=1

H(Yi|Y i−1, Xi)

Notice that the only difference between the causal conditioning entropy and the classical

entropy is the replacement of Xn by Xi. The term “causal” reflects the fact that the current

random variable Yi depends on the past and current Xi, instead of the whole sequence Xn.

Now we consider a time-ordered random variable sequence (Xn, Y n, Zn) as follows,

X1, Y1, Z1, X2, Y2, Z2, · · · , Xn−1, Yn−1, Zn−1, Xn, Yn, Zn. (2.2)

A vector-valued causal conditioning entropy is defined accordingly as

H(Zn||Xn, Y n) = Ep(Xn,Y n,Zn) log p(Zn||Xn, Y n) =
n∑
i=1

H(Zi|Zi−1, Xi, Y i),

and

H(Y n, Zn||Xn) = Ep(Xn,Y n,Zn) log p(Y n, Zn||Xn) =
n∑
i=1

H(Yi, Zi|Y i−1, Zi−1, Xi).

Now, we consider the “mix” of the causal conditioning and usual conditioning. We herein

adopt the notation introduced in Kramer (2002a). Specifically, we use the notational conven-

tion that conditioning is done from left to right. Thus, for the time-ordered random variable

sequence (2.2),

H(Y n||Xn|Zn) =
n∑
i=1

H(Yi|Y i−1, Xi, Zn).

2.2 Directed Information

To deal with the causality of the system with feedback, Massey (1990) proposed the defini-

tion of directed information as follows.

Definition 6 The directed information from a random variable sequence Xn to a random

variable sequence Y n is defined by

I(Xn → Y n) =
n∑
i=1

I(Xi;Yi|Y i−1) = Ep(Xn,Y n) log
p(Y n||Xn)

p(Y n)
.
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Equivalently,

I(Xn → Y n) = H(Y n)−H(Y n||Xn).

The directed information density is defined by

i(Xn → Y n) = log
p(Y n||Xn)

p(Y n)
.

We would like to remark that Massey’s definition of directed information implicitly restricts

the time ordering of random variables (Xn, Y n) as (2.1). We refer the interested readers to

Tatikonda and Mitter (2009) for the definition of Directed Information for an arbitrary time

ordering of random variables.

Remark 7 The directed information is of importance in characterizing the capacity of channels

with perfect feedback (Kim (2008), Kim (2010), Tatikonda and Mitter (2009)) or deterministic

feedback (Permuter et al. (2009)). Moreover, it has valuable interpretation in portfolio theory,

data compression and hypothesis testing (Permuter et al. (2011)). However, as we will show

in Chapter 3, it fails to characterize the capacity of channels with noisy feedback and is not a

proper quantity to work on while analyzing the noisy feedback systems. In addition, directed

information is also relevant in a rate distortion problem. Based on the work of Weissman

and Merhav (2003) and Pradhan (2004), Venkataramanan and Pradhan (2007) formulated a

problem of source coding with feed-forward and showed that directed information can be used

to characterize the rate-distortion function. Another source coding problem in which directed

information has arisen is investigated by Zamir et al. (2008). In their paper, a linear prediction

representation of the rate distortion function of a stationary Gaussian source is captured by

directed information.

We next recall the definition of causal conditioning directed information.

Definition 8 The directed information from a random variable sequence Xn to a random

variable sequence Y n, causal conditioning on a random variable sequence Zn, is defined by

I(Xn → Y n||Zn−1) =

n∑
i=1

I(Xi;Yi|Y i−1, Zi−1) = Ep(Xn,Y n,Zn) log
p(Y n||Xn, Zn)

p(Y n||Zn)
.
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Figure 2.1 Gaussian channels with noiseless feedback

Equivalently,

I(Xn → Y n||Zn−1) = H(Y n||Zn−1)−H(Y n||Xn, Zn−1).

The causal conditional directed information density is defined by

i(Xn → Y n||Zn−1) = log
p(Y n||Xn, Zn)

p(Y n||Zn)

Here the underlying time order of the random variable sequence is restricted to the one presented

in (2.2).

Furthermore, consider the random variable sequence (2.2) with random variables Sn given

in prior, we define

I(Xn → Y n||Zn−1|Sn) =
n∑
i=1

I(Xi;Yi|Y i−1, Zi−1, Sn) = H(Y n||Zn−1|Sn)−H(Y n||Xn, Zn−1|Sn).

2.3 Cover-Pombra (CP) Scheme

We next recall the Cover-Pombra scheme which will be used and extended in several chap-

ters. Consider a discrete-time Gaussian channel with noiseless feedback as shown in Fig.2.1.

The additive Gaussian channel is modeled as

Yi = Xi +Wi i = 1, 2, · · ·

where the gaussian noise {Wi}∞i=1 satisfies Wn = {W1,W2, · · · ,Wn} ∼ Nn(0,Kw,n) for all

n ∈ Z+. For a code of rate Rn and length n, we specify a (n, 2nRn) channel code as follows.
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M is an uniformly distributed message index where M ∈ {1, 2, 3, · · · , 2nRn}. There exists an

encoding process Xi(M,Y i−1) for i = 1, 2, · · · , n (X1(M,Y 0) = X1(M) ), with power constraint

1

n

n∑
i=1

EX2
i (M,Y i−1) ≤ P,

and a decoding function g:Y n → {1, 2, · · · , 2nRn} with an error probability satisfying

P (n)
e =

1

2nRn

2nRn∑
M=1

p(M 6= g(yn)|M) ≤ εn

where limn→∞ εn = 0. Notice that we do not assume stationarity on W . Therefore, the

classical shannon capacity (i.e. the supremium of all achievable rates R) of this feedback

Gaussian channel may not exist. Because of this fact, Cover and Pombra in 1989 defined the

n-block feedback capacity as follows.

Definition 9 Let {Wi}∞i=1 be an arbitrary Gaussian stochastic process such that Wn ∼ Nn(0,Kw,n).

Then {Cnoisyfb,n }
∞
n=1 is a sequence of n-block noisy feedback capacity if it satisfies,

1. there exists a sequence of (n, 2n(Cnoisyfb,n −ε)) noisy feedback channel codes with P
(n)
e → 0, as

n→∞, for ε > 0;

2. conversely, for ε > 0, any sequence of (n, 2n(Cnoisyfb,n +ε)) codes has P
(n)
e bounded away from

zero for all n.

In the same paper, they proposed a coding scheme, consisting of linear encoding of the feed-

back information and Gaussian signalling of the message, to characterize the n-block capacity

Cfb,n. See Fig.2.2. Specifically,

The channel input signal: Xn = Sn + BnW
n

The channel output signal: Y n = Sn + BnW
n +Wn

The power constraint: tr(Ks,n + BnKw,nB
T
n ) ≤ nP

where Sn ∼ N (0,Ks,n) is the Gaussian-signaled message information vector and Bn is an

n × n strictly lower triangular linear encoding matrix. Note that the one-step delay in the

feedback link is captured by the particular structure of matrix Bn. Random variables Sn
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Figure 2.2 Gaussian channels with noiseless feedback: Cover-Pombra scheme

and Wn are assumed to be independent. This proposed coding scheme can be specifically

expressed as a concatenated coding scheme as shown in Fig. 2.3. The outer encoder E1 maps

each message index to a vector sn which is drawn from the distribution N (0,Ks,n). The inner

encoder linearly takes the message information vector and the feedback information to produce

channel inputs.

Then, it is proved that, without loss of optimality, the n-block feedback capacity Cfb,n can

be characterized by the CP scheme as follows,

Cfb,n = max
Bn,Ks,n

1

2n
log

det ((In + Bn)Kw,n(In + Bn)T + Ks,n)

det Kw,n
(2.3)

where the maximum is taken over all positive semidefinite matrices Ks,n and all strictly lower

triangular matrices Bn satisfying

1

n
tr(Ks,n + BnKw,nB

T
n ) ≤ P. (2.4)

2.4 Conclusion

In this chapter, we reviewed some information concepts capturing real-time causality in

the feedback system, and presented the well-known CP coding scheme used for characterizing

the n-block capacity of time-varying noiseless feedback Gaussian channels. These reviewed

materials will be frequently used throughout the thesis.
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Figure 2.3 A concatenated coding representation of the CP scheme. .
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CHAPTER 3. INFORMATION FLOW ANALYSIS IN

COMMUNICATION CHANNELS WITH NOISY FEEDBACK

In this chapter, we analyze the information flow in noisy feedback systems, which provides

a foundation for addressing noisy feedback problems Li and Elia (2011b). We first introduce

a generic noisy feedback setup considered in this thesis and give a high-level discussion on

the failure of using either mutual information or directed information as a measure of the

information flow from the transmitter to the receiver, named effective information flow, through

the communication channel with noisy feedback. Then we define a new measure, named residual

directed information, and derive its properties. Finally, we provided the information flow

decomposition equality which explicitly unveils the distinctive information flow pattern in the

noisy feedback channels. As it will be shown, this decomposition equality plays a core role in

deriving novel results in the rest of this thesis.

3.1 Noisy Feedback and Causality

According to Fig.3.1, we model the channel at time i as p(yi|xi, yi−1); namely, the current

forward channel output depends on all the previous forward channel outputs, and the previous

and current forward channel inputs. The channel output (without any encoding) is then fed

back to the encoder through another noisy channel (i.e. feedback link), which is modeled as

p(zi|yi, zi−1); namely, the current feedback link output depends on all the previous feedback link

outputs, and the previous and current feedback link inputs. Note that, in order to distinguish

the forward channel and the feedback channel, we use feedback link to refer to the feedback

channel in the sequel of the thesis. At time i, the deterministic encoder takes the message index

M and the past outputs Z1, Z2, · · · , Zi−1 of the feedback link, and then produces a channel
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Figure 3.1 Communication channels with noisy feedback

input Xi. Note that the encoder has access to the output of the feedback link with one time-step

delay. At time n, the decoder takes all the channel outputs Y1, Y2, · · · , Yn and then produces

the decoded message M̂ . We present the time ordering of these random variables below.

M,X1, Y1, Z1, X2, Y2, Z2, · · · , Xn−1, Yn−1, Zn−1, Xn, Yn, M̂ (3.1)

Note that all initial conditions (e.g. channel, feedback link, channel input, etc.) are assumed

to be known in prior by both the encoder and the decoder. Before entering the more technical

part of this chapter, it is necessary to give a specific definition of “noisy feedback”.

Definition 10 (Noisy Feedback) The feedback link is noisy if for some time instant i there

exists no deterministic function gi such that

gi(X
i, Zi,M) = Y i. (3.2)

The feedback link is noiseless if it is not noisy.

Remark 11 This definition states that, for noisy feedback links, not all the channel outputs

can be exactly recovered at the encoder side and, therefore, the encoder and decoder lose mutual

understanding. In other words, at time instant i + 1, the encoder cannot access to the past

channel outputs Y i through information (Xi, Zi,M) to produce channel input Xi+1. We refer

“perfect (ideal) feedback” to be the case of Zi = Y i for all time instant i. Essentially, noiseless
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feedback is equivalent to perfect feedback since, in both cases, the encoder can access to the

channel outputs without any error.

Example 12 Consider the feedback link as Zi = Yi + Vi where Vi denotes additive noise at

time instant i. If channel outputs Yi only takes value in a set of integers (i.e. ±1,±2, · · · ) and

Vi only takes value in {±0.2,±0.4}, then obviously the channel outputs can be exactly recovered

at the encoder side. Thus, this feedback link is noiseless even though it is imperfect. In this

thesis, we may use “perfect feedback” and “noiseless feedback” alternatively without affecting

any result.

Next, we give a definition of typical noisy feedback link which will be studied in the rest of

the thesis.

Definition 13 (Typical Noisy Feedback Link) Given channel {p(yi|xi, yi−1)}∞i=1, the noisy feed-

back link {p(zi|yi, zi−1)}∞i=1 is typical if it satisfies

lim inf
n→∞

1

n

n∑
i=1

H(Zi−1|Y i−1) > 0 (3.3)

for any channel input distribution {p(xi|xi−1, zi−1)}∞i=1. The noisy feedback link is non-typical

if it is not typical.

Remark 14 This definition implies that the noise in the feedback link must be active consis-

tently over time (e.g. not physically vanishing). In practice, the typical noisy feedback link is

the most interesting case for study.

Example 15 Consider a binary symmetric feedback link modeled as Zi = Yi ⊕ Vi where noise

Vi is i.i.d and takes value from {0, 1} with equal probability. Then we have

lim inf
n→∞

1

n

n∑
i=1

H(Zi−1|Y i−1) = lim inf
n→∞

1

n

n∑
i=1

H(V i−1|Y i−1)

≥ lim inf
n→∞

1

n

n∑
i=1

H(Vi−1|Y i−1)

(a)
= lim inf

n→∞

1

n

n∑
i=1

H(Vi−1)

=1
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Figure 3.2 Family of feedback links in communication systems: the “typical noisy feedback”

is the case which we are interested in.

where (a) follows from the fact that Y i−1 is independent from Vi−1 due to one step delay.

Therefore, this noisy feedback link is typical.

We summarize the family of the feedback link in Fig.3.2. In the sequel, the term “noisy

feedback” refers to “typical noisy feedback” unless specified otherwise.

When there is no feedback from the channel output to the encoder, the maximum of mutual

information (i.e. limn→∞maxp(xn) I(Xn;Y n)) characterizes the maximum effective information

flow through the channel with arbitrarily small probability of decoding error. This quantity

is proved to be the capacity of the channel. When there is a noiseless feedback, supremizing

directed information I(Xn → Y n) over p(xn||yn) with n → ∞ gives us the feedback capacity,

e.g. Tatikonda and Mitter (2009), Kim (2008), Permuter et al. (2009). When there exists

a noisy feedback, the appropriate measure/characterization of the effective information flow

through the channel has been unknown until now. In the next section, we provide the missing

measure.

We end this section with introducing the channel causality. We will say communication

channel is causal if, for source input information φ(n) (e.g. feedback information, message

index, etc.), each channel input sequence xn (xn is a deterministic function of φ(n)) and the

corresponding output sequence yn,

p(yn|xn(φ(n)), yn−1, φ(n)) = p(yn|xn, yn−1).

The idea of this definition is that the source information φ(n) should be thought of as generated

prior to the production of the channel output yn and the channel should be aware of such
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information only via its past channel inputs and outputs and its current input. Now we assume

the channel and feedback link modeled in Fig. 3.1 are causal. It is then straightforward to

have the following facts,

p(Yn|Xn, Y n−1, Zn−1,M) = p(Yn|Xn, Y n−1),

p(Zn|Y n, Zn−1, Xn,M) = p(Zn|Y n, Zn−1).

3.2 Residual Directed Information

Now, we propose a new information theoretic concept to capture the effective information

flow (i.e. I(M ;Y n)) in noisy feedback channels. Consider random variables (Xn, Y n,Wn) with

time order

W1, X1, Y1,W2, X2, Y2, · · · ,Wn−1, Xn−1, Yn−1,Wn, Xn, Yn. (3.4)

Based on the concepts of “directed information” and the “causal conditioning directed infor-

mation”, the residual directed information and its density from Xn to Y n w.r.t. Wn is defined

as follows.

Definition 16 (Residual Directed Information and Its Density) Consider the random variables

(Xn, Y n,Wn) with time order (3.4). The residual directed information from Xn to Y n w.r.t.

Wn is defined by

IR(Xn(Wn)→ Y n) = I(Xn → Y n)− I(Xn → Y n||Wn); (3.5)

the corresponding residual directed information density is defined by

iR(Xn(Wn)→ Y n) = i(Xn → Y n)− i(Xn → Y n||Wn)

By applying this new concept to our specific noisy feedback channels (Fig. 3.1) with time

ordering of random variables in (3.1), we have

IR(Xn(M)→ Y n) = I(Xn → Y n)− I(Xn → Y n||M). (3.6)

As the message index M is given in prior and not evolving/changing with time, there exists no

causality issue when we take the conditioning. Thus, equivalently, we have

IR(Xn(M)→ Y n) = I(Xn → Y n)− I(Xn → Y n|M). (3.7)
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The following theorem shows that the residual directed information, IR(Xn(M) → Y n),

captures the mutual information between the message and the channel outputs which we refer

to be the effective information flow.

Theorem 17 If Xn and Y n are the inputs and outputs, respectively, of a discrete channel with

noisy feedback, as shown in Fig.3.1, then

I(M ;Y n) = IR(Xn(M)→ Y n) = I(Xn → Y n)− I(Xn → Y n|M).

Proof.

I(M ;Y n)

=H(Y n)−H(Y n|M)

=

n∑
i=1

H(Yi|Y i−1)−
n∑
i=1

H(Yi|Y i−1,M)

=

n∑
i=1

H(Yi|Y i−1)−
n∑
i=1

H(Yi|Y i−1,M,Xi)− (

n∑
i=1

H(Yi|Y i−1,M)−
n∑
i=1

H(Yi|Y i−1,M,Xi))

(a)
=

n∑
i=1

H(Yi|Y i−1)−
n∑
i=1

H(Yi|Y i−1, Xi)− (

n∑
i=1

H(Yi|Y i−1,M)−
n∑
i=1

H(Yi|Y i−1,M,Xi))

=

n∑
i=1

I(Xi;Yi|Y i−1)−
n∑
i=1

I(Xi;Yi|Y i−1,M)

=I(Xn → Y n)− I(Xn → Y n|M)

(b)
=IR(Xn(M)→ Y n)

where (a) follows from the causality of the forward channel, i.e., the Markov chain M −

(Xi, Y i−1)− Yi. Line (b) follows from the definition of the residual directed information.

Remark 18 This theorem implies that, for noisy feedback channels, the directed information

I(Xn → Y n) captures both the effective information flow (i.e. I(M ;Y n)) generated by the

message and the redundant information flow (i.e. I(Xn → Y n|M)) generated by the feedback

noise (dummy message). Since only I(M ;Y n) is the relevant quantity for channel capacity, the

well-known directed information clearly fails to characterize the noisy feedback capacity.
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In the following corollary, we explore some properties of the residual directed information

IR(Xn(M)→ Y n).

Corollary 19 The residual directed information IR(Xn(M) → Y n) satisfies the following

properties:

1. IR(Xn(M) → Y n) ≥ 0 (with equality if and only if the message set M and channel

outputs Y n are independent.)

2. IR(Xn(M)→ Y n) ≤ I(Xn → Y n) ≤ I(Xn;Y n).

The first equality holds if the feedback is perfect. The second equality holds if there is no feedback.

Proof. 1). Following from Theorem 17, IR(Xn(M)→ Y n) = I(M ;Y n) ≥ 0. The necessary

and sufficient condition of IR(Xn(M)→ Y n) = 0 is obvious by looking at I(M ;Y n).

2). Since I(Xn → Y n|M) =
∑n

i=1 I(Xi;Yi|Y i−1,M) ≥ 0 (equality holds for the perfect

feedback case),

IR(Xn(M)→ Y n) = I(Xn → Y n)− I(Xn → Y n|M) ≤ I(Xn → Y n)

The proof of the second inequality I(Xn → Y n) ≤ I(Xn;Y n) is presented in Massey (1990).

Now, we give bounds on the first and second moments of the density function.

Proposition 20 The following inequality holds for any channel input distribution, channels

and feedback links.

1) E[iR(Xn(M)→ Y n)] ≤ log |Yn|

2) V ar[iR(Xn(M)→ Y n)] ≤ 2|Yn|

Proof. See Appendix.
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3.3 Information Flow Decomposition in Noisy Feedback Channels

Having proposed a new concept, residual directed information, we find out that the directed

information is not the right quantity to work on in order to characterize the capacity of noisy

feedback channels. In particular, in noiseless feedback setting, we have I(M ;Y n) = I(Xn →

Y n), implying that the directed information flow from Xn to Y n is fully used for delivering

the message. However, as it is shown in Theorem 17, this fact does not hold due to the extra

term I(Xn → Y n|M). What does this term imply? or what are the redundant information

flows captured by this extra term? We give an answer to this question in this section and, as

a consequence, we have a clear picture of the information flow in noisy feedback channels.

Theorem 21 (Information Flow Decomposition Equality(IFDE)) If Xn and Y n are the inputs

and outputs, respectively, of a discrete channel with noisy feedback, and Zn is the outputs of

the feedback link, as shown in Fig.3.1, then

I(Xn → Y n) = I(M ;Y n) + I(Zn−1 → Y n) + I(Zn−1;M |Y n).

Proof. Based on Theorem 17, we only need to show

I(Xn → Y n|M) = I(Zn−1 → Y n) + I(Zn−1;M |Y n).
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We begin with I(Zn−1;M |Y n), that is,

I(Zn−1;M |Y n)

=I(Zn−1, Y n;M)− I(Y n;M)

=

n∑
i=1

I(Zi−1, Yi;M |Zi−2, Y i−1)− I(Y n;M)

=
n∑
i=1

H(Zi−1, Yi|Zi−2, Y i−1)−H(Zi−1, Yi|Zi−2, Y i−1,M)− I(Y n;M)

=
n∑
i=1

H(Yi|Zi−1, Y i−1) +H(Zi−1|Zi−2, Y i−1)−H(Yi|Zi−1, Y i−1,M)

−H(Zi−1|Zi−2, Y i−1,M)− I(Y n;M)

(a)
=

n∑
i=1

H(Yi|Zi−1, Y i−1) +H(Zi−1|Zi−2, Y i−1)−H(Yi|Zi−1, Y i−1,M)

−H(Zi−1|Zi−2, Y i−1)− I(Y n;M)

=
n∑
i=1

H(Yi|Zi−1, Y i−1)−H(Yi|Zi−1, Y i−1,M)− I(Y n;M)

=
n∑
i=1

H(Yi|Zi−1, Y i−1)−H(Yi|Xi(Zi−1,M), Zi−1, Y i−1,M)− I(Y n;M)

(b)
=

n∑
i=1

H(Yi|Zi−1, Y i−1)−H(Yi|Xi, Y i−1,M)−H(Y n) +H(Y n|M)

where line (a) follows from the causality of the feedback link, i.e., the Markov chain M −

(Zi−1, Y i) − Zi. Line (b) follows from the causality of the forward channel, i.e., the Markov

chain (M,Zi−1)− (Xi, Y i)− Yi.

Next, we have

I(Zn−1 → Y n)

=H(Y n)−H(Y n||Zn−1)

=H(Y n)−
n∑
i=1

H(Yi|Zi−1, Y i−1)
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Then the sum

I(Zn−1 → Y n) + I(Zn−1;M |Y n)

=
n∑
i=1

H(Yi|Y i−1,M)−H(Yi|Xi, Y i−1,M)

=
n∑
i=1

I(Xi, Yi|Y i−1,M)

=I(Xn → Y n|M)

The proof is complete.

It is clear to check that, if the feedback channel is perfect (i.e. Zi = Yi for all i), the last

two information flows (shown in Theorem 21) delivered in the forward channel turn out to be

zero. As a result, the quantity I(Zn−1 → Y n) can be treated as a measure of the amount of

information delivered in the forward channel as a result of adding uncertainties in the feedback

channel. In addition, the quantity I(Zn−1;M |Y n) can be treated as a measure of the amount

of the interference between the uncertainties in the feedback channel and the message while

both of them are delivered in the forward channel.

To gain more insight in the information flow pattern, we next investigate channels with

additive noise feedback and analyze its information flow on a dependency graph. See Fig.3.3.

We present the time ordering of these random variables below. Zi is not shown in the time

ordering since we have Zi = Yi + Vi.

M,X1, Y1, V1, X2, Y2, V2, · · · , Xn−1, Yn−1, Vn−1, Xn, Yn, M̂

Corollary 22 If Xn and Y n are the inputs and outputs, respectively, of a discrete channel

with additive noise feedback, as shown in Fig.3.3, then

I(Xn → Y n) = I(M ;Y n) + I(V n−1;Y n) + I(M ;V n−1|Y n)

Proof. See Appendix.

Corollary 22 allows us to explicitly interpret the information flow on a dependency graph

(e.g. N = 3). See Fig.3.4. The solid lines from message M to sequence X3 represent the
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Figure 3.3 Communication Channels with additive noise feedback

Figure 3.4 The information flow of channels with additive noise feedback
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dependence of X3 on M . The dotted lines from additive noise V 2 to sequence X3 represent the

dependence of X3 on V 2. The dependence of the channel inputs X3 on the channel outputs

Y 2 is not shown in the graph since the directed information only captures the information

flow from X3 to Y 3 (Massey (1990)). As it is shown in the zoomed circle, the directed in-

formation flow from X3 to Y 3 (through cut A − B) implicitly contains three sub-information

flows wherein the mutual information I(M ;Y 3) and I(V 2;Y 3) measure the message-delivery

and the noise-delivery information flows, respectively. The feedback noise V 2 is treated as a

dummy message which also needs to be recovered by the decoder. The conditional mutual infor-

mation I(M ;V 2|Y 3) quantifies the mixed information flow between the message-transmitting

and noise-transmitting flows. Essentially, the second term in the residual directed information

(i.e. I(Xn → Y n|M)) precisely captures the non-message transmitting information flows (i.e.

I(V n−1;Y n) and I(M ;V n−1|Y n)). Therefore, the residual directed information should be a

proper measure to work with for channels with noisy feedback.

3.4 Conclusions

In this chapter, we have proposed a new concept, residual directed information, to capture

the message-delivery quantity in channels with noisy feedback. The new concept indicates

in principle the failure of using the well-know mutual information or directed information to

characterize noisy feedback capacity. Motivated by this new concept, we next derived the main

result, information flow decomposition equality, which reveals the information flow pattern in

noisy feedback channels.

In sum, understanding the information flow in noisy feedback channels leads us to a higher

level to investigate the noisy feedback problem and performs as the basis to develop fruitful

results (to be seen later in this thesis).
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CHAPTER 4. A CHANNEL CODING THEOREM AND BOUNDS ON

THE CAPACITY OF FINITE-ALPHABET CHANNELS WITH NOISY

FEEDBACK

4.1 Introduction

In this section, we first derive a channel coding theorem for finite-alphabet channels with

noisy feedback Li and Elia (2011c). The result is of theoretical value as it fits in the general the-

ory already developed for non-feedback channels. However the characterization of the capacity

has infinite multi-letter form and is not computable in general. But as a mediate technical

step, this channel coding theorem allows us to derive bounds in terms of the well-known causal

conditioning directed information.

To be concrete, for general non-feedback channels, Verdú and Han have characterized the

general channel capacity by invoking Feinstein’s lemma. Tatikonda and Mitter (2009) extended

this approach to finite-alphabet channels with noiseless feedback and characterized the capacity

in term of the directed information. The main idea therein is to convert the channel coding

problem with noiseless feedback into an equivalent channel coding problem without feedback

by considering code-functions instead of code-words. In fact, code-functions can be treated as

a generalization of code-words. In this chapter, we extend this idea to noisy feedback settings

to obtain a channel coding theorem.

As it is shown in Chapter 3, for channels with noisy feedback, the directed information is

not a proper quantity to characterize the channel capacity. We then proposed a new concept,

residual directed information, and showed that this quantity equals the mutual information

between the message and the channel outputs (i.e. the information received by the decoder).

As the first and important application of this new concept, in this chapter, we show that the
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residual directed information can be used to characterize the capacity of finite alphabet chan-

nels with noisy feedback, by invoking the code-function approach used in Tatikonda and Mitter

(2009). As it will be shown, this characterization has nice features and provides much insight in

the noisy feedback capacity. We then propose capacity bounds which are characterized by the

causal conditioning directed information. Finally, we investigate the special class of channels,

finite-state finite-alphabet channels, and provide an upper bound in form of a finite dimensional

optimization on its capacity.

Figure 4.1 Channels with noisy feedback (a code-function representation)

4.2 Problem Formulation and Preliminaries

We first formulate the channel coding problem. Here, we require the use of code-functions

as opposed to codewords, as shown in Fig.4.1. Briefly, at time 0, we choose a message from a

message set M . This message is associated with a sequence of code-functions. Then from time

1 to n, we use the channels to transmit information sequentially based on the corresponding

code-function. At time n+ 1, we decode the message as M̂ . We now give a formal definition of

this communication scheme, which extends the description presented in Tatikonda and Mitter

(2009).

Definition 23 (Communication Scheme for Channels with Noisy Feedback: A Code-function
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Representation)

1. A message index m ∈ {1, 2, · · · ,M}

2. A channel code-function is a sequence of n deterministic measurable maps fn = {fi}ni=1

(f ∈ F) such that fi : Z i−1 → X which takes zi−1 7→ xi.

3. A channel encoder is a set of M channel code-functions, denoted by {fn[m]}Mm=1.

4. A channel is a family of conditional probability {p(yi|xi, yi−1)}ni=1.

5. A noisy feedback link is a family of conditional probability {p(zi|yi, zi−1)}ni=1.

6. A channel decoder is a map g which takes yn 7→ m.

Based on the above communication scheme, we redefine the channel code and ε-achievable

rate in terms of code-functions.

Definition 24 (Channel Code) A (n,M, ε) channel code over time horizon n consists of M

code-functions {fn[m]}Mm=1, a channel decoder g, and an error probability satisfying

1

M

M∑
m=1

p(m 6= g(yn)|m) ≤ ε

Definition 25 (ε-achievable Rate) R ≥ 0 is an ε-achievable rate if, for every ε > 0, there

exist, for all sufficiently large n, a (n,M, ε) channel code with rate

logM

n
≥ R− ε

The maximum ε-achievable rate is called the ε-capacity, denoted by Cnoisyfb (ε). The channel

capacity Cnoisyfb is defined as the maximal rate that is ε-achievable for all 0 < ε < 1. Clearly,

Cnoisyfb = limε→0C
noisy
fb (ε)

The channel coding problem is to search for a sequence of (n,M, ε) channel codes under

which the achievable rate is maximized as n → ∞. In order to construct a general channel

coding theorem (i.e. no restrictions on channels and input/output alphabets, such as stationary,

ergodic, · · · ), we introduce the following two probabilistic limit operations (Han (2003)).

Definition 26 (Probabilistic Limit) The limit superior in probability for any sequence (X1, X2, · · · )

is defined by

p− lim sup
n→∞

Xn = inf{α| lim
n→∞

Prob{Xn > α} = 0}
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Similarly, the limit inferior in probability for any sequence (X1, X2, · · · ) is defined by

p− lim inf
n→∞

Xn = sup{β| lim
n→∞

Prob{Xn < β} = 0}

Next, we introduce some notations.

I(X;Y ) = p− lim inf
n→∞

1

n
i(Xn;Y n)

I(X;Y ) = p− lim sup
n→∞

1

n
i(Xn;Y n)

IR(X(F )→ Y ) = p− lim inf
n→∞

1

n
iR(Xn(Fn)→ Y n)

I
R

(X(F )→ Y ) = p− lim sup
n→∞

1

n
iR(Xn(Fn)→ Y n)

Following the idea in Tatikonda and Mitter (2009), it is convenient to consider the noisy

feedback channel problem as a regular nonfeedback problem from the input alphabet F to the

output alphabet Y as shown in Fig.4.1. This consideration provides us with an approach to

prove the channel coding theorem for channels with noisy feedback. Recall that the capacity

of nonfeedabck channels is characterized as follows (Verdú and Han (1994)).

Theorem 27 (Non-feedback Channel Capacity) For any channel with arbitrary input and out-

put alphabets F and Y, the channel capacity C is given by

C = sup
F
I(F ;Y )

where supF denotes the supremum with respect to all the input processes F .

However, before applying the above result, we need to understand the inherent connection

between the equivalent nonfeedabck channel and the original channel with noisy feedback link.

Moreover, as supremizing the mutual information over code-function F is inconvenient, we

need create a connection between the nonfeedback channel input distribution {p(fn)} and the

original channel input distribution such that we can still work on the original channel input.

These two issues are the main technical steps toward the channel coding theorem. We provide

these results as lemmas in the next subsection. Then, we prove the channel coding theorem

along the lines of the proof of Theorem 27.
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4.2.1 Technical Lemmas

We first show an equality of information densities between the nonfeedback channel Fn →

Yn and the original channel X n → Yn.

Lemma 28

i(Fn;Y n) = iR(Xn(Fn)→ Y n)

where iR(Xn(Fn)→ Y n) is defined as

iR(Xn(Fn)→ Y n) = i(Xn → Y n)− i(Xn → Y n||Fn).

Proof.

i(Fn;Y n) = log
p(Fn, Y n)

p(Fn)p(Y n)

= log

∏n
i=1 p(Fi, Yi|F i−1, Y i−1)

p(Fn)p(Y n)

= log

∏n
i=1 p(Yi|F i, Y i−1)p(Fi|F i−1, Y i−1)

p(Fn)p(Y n)

(a)
= log

∏n
i=1 p(Yi|F i, Y i−1)p(Fi|F i−1)

p(Fn)p(Y n)

= log
~p(Y n|Fn, Xn)

p(Y n)
− log

~p(Y n|Fn, Xn)∏n
i=1 p(Yi|F i, Y i−1)

= log

∏n
i=1 p(Yi|F i, Xi, Y i−1)

p(Y n)
− log

~p(Y n|Fn, Xn)∏n
i=1 p(Yi|Y i−1, F i)

(b)
= log

∏n
i=1 p(Yi|Xi, Y i−1)

p(Y n)
− log

~p(Y n|Fn, Xn)

~p(Y n|Fn)

= log
~p(Y n|Xn)

p(Y n)
− log

~p(Y n|Fn, Xn)

~p(Y n|Fn)

= i(Xn → Y n)− i(Xn → Y n||Fn)

= iR(Xn(Fn)→ Y n)

where (a) follows from the fact that no feedback exists from Y to F . Line (b) follows from the

Markov chain F i − (Xi, Y i−1)− Yi.

In the next lemma, we shows that there exists a suitable construction of p(fn) such that the

induced channel input distribution equals the original channel input distribution. As we will
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see, this result allows us to work on the channel input distributions instead of code-function

distributions.

Lemma 29 Given a channel {p(yi|xi, yi−1)}ni=1, a feedback link {p(zi|yi, zi−1)}ni=1, a channel

input distribution {p(xi|xi−1, zi−1)}ni=1 and a sequence of code-function distributions {p(fi|f i−1)}ni=1,

the induced channel input distribution {pind(xi|xi−1, zi−1)}ni=1 (induced by {p(fi|f i−1)}ni=1)

equals the original channel input distribution {p(xi|xi−1, zi−1)}ni=1 if and only if the sequence

of code-function distributions {p(fi|f i−1)}ni=1 is good with respect to {p(xi|xi−1, zi−1)}ni=1. One

choice of such a sequence of code-function distributions is as follows,

p(fi|f i−1) =
∏
zi−1

p(fi(z
i−1)|f i−1(zi−2), zi−1). (4.1)

We refer the readers to Definition 5.1, Lemma 5.1 and 5.4 in Tatikonda and Mitter (2009)

for the concept “good with respect to” and the proof of the above lemma. According to Lemma

29, it is straightforward to obtain the following result which plays an essential role in the

channel coding theorem.

Lemma 30 For channels with noisy feedback,

p(xn, yn, fn)

=
n∏
i=1

∏
zi−1

p(fi(z
i−1)|f i−1(zi−2), zi−1)︸ ︷︷ ︸

Encoding

∑
zn∈{Zn:xn=fn(zn−1)}

n∏
i=1

p(zi|yi, zi−1)︸ ︷︷ ︸
Feedback link

p(yi|f i(zi−1), yi−1)︸ ︷︷ ︸
Channel

The proof is shown in the Appendix. This lemma implies that IR(X(F )→ Y ) only depends

on channel input distribution {p(xi|xi−1, zi−1)}∞i=1.

4.3 Channel Coding Theorem

Now we show a general channel coding theorem in terms of the residual directed information.
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Theorem 31 (Channel Coding Theorem) For channels with noisy feedback,

Cnoisyfb = sup
X
IR(X(F )→ Y ) (4.2)

where supX means that supremum is taken over all possible channel input distributions

{p(xi|xi−1, zi−1)}∞i=1.

The proof comes along the proof of Theorem 27 in Verdú and Han (1994) and hence is

presented in the Appendix. Theorem 31 indicates that, besides capturing the effective infor-

mation flow of channels with noisy feedback, the residual directed information is also beneficial

for characterizing the capacity. Although formula (4.2) may not be the only or the simplest

characterization of the noisy feedback capacity, it provides benefits in many aspects. We herein

present two of them as follows.

1. Measurements of information flows: Let p∗ be the optimal solution of formula (4.2). Then

we obtain that, when the channel is used at capacity, the total transmission rate in the

forward channel is in fact I(X → Y )|p∗1 instead of Cnoisyfb and the difference between

them (i.e.redundant transmission rate) is I(X → Y |F )|p∗ . These numerical knowledge

might be crucial in system design and evaluation.

2. Induced capacity bounds: Let q∗ = arg supX I(X → Y ) where supremum is taken over

all possible channel input distributions {p(xi|xi−1, zi−1)}∞i=1. Since code-function F is

not involved at this point, the computation complexity is significantly reduced. Based

on Theorem 31, it is straightforward to obtain I(X → Y )|q∗ and IR(X(F ) → Y )|q∗ as

upper2 and lower bounds on the capacity, respectively. Further, the gap between the

bounds is I(X → Y |F )|q∗ , which is definitely a tightness evaluation of the bounds.

4.4 Capacity Bounds

As it is shown, the capacity characterization in Theorem 31 is not computable in general

due to the probabilistic limit and code-functions. This motivates us to explore some conditions

1I(X → Y )|p∗ denotes that the value is evaluated at channel input distributions p∗.
2Note that I(X → Y )|q∗ = sup{p(xi|xi−1,zi−1)}∞i=1

I(X → Y ) ≤ CFB = sup{p(xi|xi−1,yi−1)}∞i=1
I(X → Y )

where CFB is the corresponding perfect feedback capacity. Therefore this upper bound is in general better than
CFB .
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under which the previous characterization can be simplified or to look at some computable

bounds instead. Toward this end, we first introduce a strong converse theorem under which

the “probabilistic limit” can be replaced by the “normal limit”. We then turn to characterize a

pair of upper and lower bounds which is much easier to compute and tight in certain practical

situations.

Definition 32 (Strong Converse) A channel with noisy feedback capacity Cnoisyfb has a strong

converse if for any R > Cnoisyfb , every sequence of channel codes {(n,Mn, εn)}∞n=1 with

lim inf
n→∞

1

n
logMn ≥ R

satisfies limn→∞ εn = 1

Theorem 33 (Strong Converse Theorem) A channel with noisy feedback capacity Cnoisyfb sat-

isfies the strong converse property if and only if

sup
X
IR(X(F )→ Y ) = sup

X
I
R

(X(F )→ Y )3 (4.3)

Furthermore, if the strong converse property holds, we have

Cnoisyfb = sup
X

lim
n→∞

1

n
IR(Xn(Fn)→ Y n).

The proof directly follows from chapter 3.5 in Han (2003) by appropriate replacement

of iR(Xn(Fn) → Y n) on i(Fn;Y n). This theorem gives us an important message that, for

channels satisfying the strong converse property, we may compute the noisy feedback capacity

by taking the normal limit instead of the probabilistic limit. How to further simplify the

capacity characterization will be explored in the future.

We next propose an upper bound on the noisy feedback capacity.

Theorem 34 (Upper Bound)4

C̄noiseFB = sup
X

lim inf
n→∞

1

n
I(Xn → Y n||Zn−1) (4.4)

3This condition can be alternatively expressed as supX I(F ;Y ) = supX I(F ;Y ). Since the computation com-
plexity difference between the mutual information and residual directed information is not justified, either condi-
tion is a candidate for check. Note that how to check the strong converse is out of the scope of this chapter.

4As we will see from the proof, this upper bound holds for any finite-alphabet channel with or without strong
converse property.
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where C̄noiseFB denotes the upper bound of the capacity and the supremum is taken over all possible

channel input distribution {p(xi|xi−1, zi−1)}∞i=1.

Note that this upper bound holds for channels with strong converse or not. We need the

following lemma before showing the proof of Theorem 34.

Lemma 35

I(Fn;Y n) = IR(Xn(Fn)→ Y n) = I(Xn → Y n||Zn−1)− I(Fn;Zn−1|Y n)

Proof. See Appendix.

Now we present the proof of Theorem 34 as follows.

Proof. Recall Lemma A1 in Han and Verdú (1993), we have I(F ;Y ) ≤ lim infn→∞
1
nI(Fn;Y n)

for any sequence of joint probability. That is, IR(X(F ) → Y ) ≤ lim infn→∞
1
nI

R(Xn(Fn) →

Y n). Then by Lemma 35,

Cnoisyfb ≤ sup
X

lim inf
n→∞

1

n
IR(Xn(Fn)→ Y n)

= sup
X

lim inf
n→∞

1

n
(I(Xn → Y n||Zn−1)− I(Fn;Zn−1|Y n))

≤ sup
X

lim inf
n→∞

1

n
I(Xn → Y n||Zn−1)

(4.5)

Corollary 36 Assume that there is an independent additive noise feedback (Fig.3.4), then

C̄noiseFB = sup
X

lim inf
n→∞

1

n
I(Xn → Y n||V n−1)

where supX means that supremum is taken over all possible channel input distribution {p(xi|xi−1, yi−1+

vi−1)}∞i=1.

Proof.

I(Xn → Y n||Zn−1) =
n∑
i=1

I(Xi, Yi|Y i−1, Zi−1)

=
n∑
i=1

I(Xi, Yi|Y i−1, V i−1)

=I(Xn → Y n||V n−1)
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Next, we show a lower bound on the capacity for strong converse channels with additive

noise feedback. Although proposing a particular coding scheme is a standard approach to

obtain a lower bound on the capacity, it is not clearly doable for noisy feedback settings. We

herein propose a lower bound from another route which is not restricted to any specific coding

scheme. In addition, this lower bound has nice features and its own advantages.

Theorem 37 (Lower Bound) Assume that a channel with an independent additive noise feed-

back (Fig.3.3) satisfies the strong converse property. A lower bound on the noisy feedback

capacity is given by

CnoiseFB = C̄noiseFB − h̄(V )

where

h̄(V ) = lim sup
n→∞

1

n
H(V n−1).

Proof. We need to show that, for any δ > 0, there exists a sequence of (n,M, εn)

channel codes (εn → 0 as n→∞) with transmission rate

R =C̄noiseFB − h̄(V )− δ

= sup
X

lim inf
n→∞

1

n
I(Xn → Y n||V n−1)− h̄(V )− δ.

Now, for any fixed δ > 0, we take ξ satisfying 0 < ξ < δ and let Xξ be a sequence of channel

input distributions {p(xi|xi−1, zi−1)}∞i=1 satisfying(
lim inf
n→∞

1

n
I(Xn → Y n||Zn−1)

) ∣∣∣∣
X=Xξ

= sup
X

lim inf
n→∞

1

n
I(Xn → Y n||Zn−1)− ξ (4.6)

where
(
lim infn→∞

1
nI(Xn → Y n||Zn−1)

)
|X=Xξ denotes that lim infn→∞

1
nI(Xn → Y n||Zn−1)

is evaluated at X = Xξ. According to the definition of supremum, the existence of Xξ is

guaranteed. Since for strong converse channels we have

Cnoisyfb = sup
X

lim
n→∞

1

n
IR(Xn(Fn)→ Y n),
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we know that, for any δ > 0, there exist a sequence of (n,M, εn) channel codes (εn → 0 as

n→∞) with transmission rate

R =

(
lim
n→∞

1

n
IR(Xn(Fn)→ Y n)

) ∣∣∣∣
X=Xξ

− (δ − ξ).

By Lemma 35,

R =

(
lim
n→∞

1

n
(I(Xn → Y n||Zn−1)− I(Fn;Zn−1|Y n))

) ∣∣∣∣
X=Xξ

− (δ − ξ)

=

(
lim
n→∞

1

n
(I(Xn → Y n||Zn−1)−H(Zn−1|Y n) +H(Zn−1|Y n, Fn))

) ∣∣∣∣
X=Xξ

− (δ − ξ)

≥
(

lim inf
n→∞

1

n
(I(Xn → Y n||Zn−1)−H(Zn−1|Y n))

) ∣∣∣∣
X=Xξ

− (δ − ξ)

=

(
lim inf
n→∞

1

n
(I(Xn → Y n||Zn−1)−

n∑
i=1

H(Zi−1|Zi−2, Y n))

)∣∣∣∣
X=Xξ

− (δ − ξ)

≥

(
lim inf
n→∞

1

n
(I(Xn → Y n||Zn−1)−

n∑
i=1

H(Zi−1|Zi−2, Y i−1))

)∣∣∣∣
X=Xξ

− (δ − ξ)

(a)
=

(
lim inf
n→∞

1

n
(I(Xn → Y n||Zn−1)−

n∑
i=1

H(Vi−1|V i−2))

)∣∣∣∣
X=Xξ

− (δ − ξ)

≥
(

lim inf
n→∞

1

n
(I(Xn → Y n||Zn−1)−H(V n−1))

) ∣∣∣∣
X=Xξ

− (δ − ξ)

≥
(

lim inf
n→∞

1

n
I(Xn → Y n||Zn−1)

) ∣∣∣∣
X=Xξ

+ lim inf
n→∞

− 1

n
H(V n)− (δ − ξ)

=

(
lim inf
n→∞

1

n
I(Xn → Y n||Zn−1)

) ∣∣∣∣
X=Xξ

− lim sup
n→∞

1

n
H(V n)− (δ − ξ)

(b)
= sup

X
lim inf
n→∞

1

n
I(Xn → Y n||Zn−1)− ξ − h̄(V )− (δ − ξ)

= sup
X

lim inf
n→∞

1

n
I(Xn → Y n||Zn−1)− h̄(V )− δ

(c)
= sup

X
lim inf
n→∞

1

n
I(Xn → Y n||V n−1)− h̄(V )− δ

where (a) follows from the fact that Zi = Yi+Vi and the Markov Chain (Zi−1, Y i)−V i−1−Vi.

Line (b) follows from equation (4.6). Line (c) follows from Corollary 3.

Since δ can be arbitrarily small, the proof is complete.

Remark 38 This theorem reveals an important message that the gap between the proposed

upper and lower bounds only depends on the feedback additive noise V (i.e. independent from
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the forward channel). Further, if the entropy rate of noise V goes to zero5, the proposed upper

and lower bound converges and thus the capacity is known.

Figure 4.2 Finite state channels with noisy feedback

4.5 Case Study: Capacity Bounds for Finite State Channels

In the previous section, we provide bounds, in terms of the causal conditioning directed

information, on the noise feedback capacity. However, evaluate the limit value of these formulas

is notoriously difficult in general. In this section, we consider a special class of noisy feedback

channels, finite state channels (FSC), and then propose an upper bound on the capacity.

Firstly investigated in Gallager (1968), FSC are a class of channels rich enough to include

channels with memory, e.g., channels with inter-symbol interference (ISI). FSC with feedback

have attracted much attention in the recent decade. The capacity of some channels with

channel state information at the receiver and transmitter was derived by Viswanathan (1999)

and Caire and Shamai(Shitz) (1999). In Permuter et al. (2009), the capacity of FSC with

deterministic feedback was characterized, which is a generalization of the non-feedback and

noiseless feedback cases. In addition, Yang et al. (2005) computed the feedback FSC capacity

under the assumption that the state channel is a deterministic function of the previous state

5In many practical situations, the entropy rate of the feedback noise is small. For example, if the feedback link
only suffers intersymbol interference as illustrated in Chapter 4 Gallager (1968), the entropy rate turns out to
be approximately 0.0808. Further, if the cardinality of V∞ is finite (yet the feedback is still noisy), the entropy
rate is clearly zero.
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and input. Chen and Berger (2005) also computed the feedback FSC capacity but under the

assumption that the state channel is a deterministic function of the output. In this section, we

consider FSC with noisy feedback as shown in Fig 4.2. The input of the channel is denoted by

{Xi}∞i=1, and the output of the channel is denoted by {Yi}∞i=1. In addition, the channel states

take values in a finite set of possible states S. The channel is stationary and is characterized

by a conditional probability assignment p(yi, si|xi, si−1) that satisfies

p(yi, si|xi, si−1, yi−1) = p(yi, si|xi, si−1),

where the initial state distribution is p(s0). An FSC is said to be without ISI if the input

sequence does not affect the evolution of the state sequence, i.e., p(si|si−1, xi) = p(si|si−1).

The feedback channel is characterized in a general form p(zi|yi, zi−1) and is assumed to be

stationary.

Define

C̄noisyfb,n =
1

n
max

Q(xn||zn−1)
max
s0

I(Xn → Y n||Zn−1|s0).

and

C̄noisyfb , lim
n→∞

C̄noisyfb,n ;

a limit that will be shown to exist in Theorem 43. In this section, we wish to show the following

theorem.

Theorem 39 The capacity of an FSC with noisy feedback, if it exists, is upper bounded by

Cnoisyfb ≤ C̄noisyfb ≤
[
C̄noisyfb,n +

log |S|
n

]
.

for all n > 0.

Before moving to the proof of this theorem, we present some necessary lemmas as follows.

The omitted proofs of the following lemmas are given in Appendix.

4.5.1 Necessary Technical Lemmas

Lemma 40 Let Xn, Y n, Zn−1 be arbitrary random vector and S be a random variable taking

values in an alphabet of size |S|. Then

|I(Xn → Y n|Zn−1)− I(Xn → Y n||Zn−1|S)| ≤ H(S) ≤ log|S|.



www.manaraa.com

44

Lemma 41 For an FSC with noisy feedback as shown in Fig. 4.2, we have

p(yN |xN , yN−1, zN−1, sn) = p(yN |xNn+1, y
N−1
n+1 , z

N−1
n , sn)

for all n ≤ N − 1.

We next present the necessary sub-additive lemma below, the proof of which can be found

in Appendix 4A Gallager (1968).

Lemma 42 (Sub-additive Sequence) Let aN , N = 1, 2, · · · ,∞ be a bounded sequence of num-

bers. Assume that, for all 1 ≤ n < N ,

NaN ≤ nan + (N − n)aN−n

then

lim
N→∞

aN = inf
N
aN .

4.5.2 Proof of Theorem 39

First of all, we show a theorem as follows.

Theorem 43 For a noisy feedback FSC with |S| states,

lim
n→∞

C̄noisyfb,n = inf
n

[
C̄noisyfb,n +

log |S|
n

]

Proof. Let Q(xN ||zN−1) and s0 be the input distribution and the initial state that achieves

C̄noisyfb,N . All the distributions used in the following lines are determined by Q(xN ||zN−1) and
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the channels:

NC̄noisyfb,N =I(Xn → Y n||Zn−1|s0)

n∑
i=1

I(Xi;Yi|Y i−1, Zi−1, s0) +
N∑

i=n+1

I(Xi;Yi|Y i−1, Zi−1, s0)

≤nC̄noisyfb,n +
N∑

i=n+1

I(Xi;Yi|Y i−1, Zi−1, s0)

(a)

≤nC̄noisyfb,n +
N∑

i=n+1

I(Xi;Yi|Y i−1, Zi−1, Sn, s0) + log |S|

=nC̄noisyfb,n +
N∑

i=n+1

H(Yi|Y i−1, Zi−1, Sn, s0)−H(Yi|Xi, Y i−1, Zi−1, Sn, s0) + log |S|

(b)

≤nC̄noisyfb,n +
N∑

i=n+1

H(Yi|Y i−1
n+1, Z

i−1
n+1, Sn)−H(Yi|Xi

n+1, Y
i−1
n+1, Z

i−1
n+1, Sn) + log |S|

=nC̄noisyfb,n +
N∑

i=n+1

I(Xi
n+1;Yi|Y i−1

n−1, Z
i−1
n+1, Sn) + log |S|

=nC̄noisyfb,n + I(XN
n+1 → Y N

n+1||ZN−1
n+1 |Sn) + log |S|

≤nC̄noisyfb,n + max
sn

I(XN
n+1 → Y N

n+1||ZN−1
n+1 |sn) + log |S|

(c)

≤nC̄noisyfb,n + lC̄noisyfb,l + log |S|

where line (a) is due to Lemma 40 where the first element in the sequence XN is Xn. Inequality

(b) follows from the fact that conditioning reduces entropy and the use of Lemma 41. Rearrange

the last inequality, we have

N

[
C̄noisyfb,N +

log |S|
N

]
≤ n

[
C̄noisyfb,n +

log |S|
n

]
+ l

[
C̄noisyfb,l +

log |S|
l

]
.

According to the sub-additive lemma 42, and since

lim
N→∞

[
C̄noisyfb,N +

log |S|
N

]
= lim

N→∞
C̄noisyfb,N ,

the proof is complete.

Now, we are ready to show the proof of the main result. For reader’s convenience, we recall

the main result below and then present the proof.

Theorem 44 The capacity of an FSC with noisy feedback, if exists, is upper bounded by

Cnoisyfb ≤ C̄noisyfb ≤
[
C̄noisyfb,n +

log |S|
n

]
.



www.manaraa.com

46

Proof. Consider a code (n, 2nR) with average error probability P
(n)
e , we have

NR =H(M)

=I(M ;Y N ) +H(M |Y N )

(a)

≤I(M ;Y N ) + 1 +NP (N)
e R

(b)

≤I(Xn → Y n||Zn−1) + 1 +NP (N)
e R

(c)

≤I(Xn → Y n||Zn−1|S0) + log |S|+ 1 +NP (N)
e R

=
∑
s0∈S

p(s0)I(Xn → Y n||Zn−1|s0) + log |S|+ 1 +NP (N)
e R

≤max
s0

I(Xn → Y n||Zn−1|s0) + log |S|+ 1 +NP (N)
e R

where line (a) follows from Fano’s inequality. Line (b) follows from Lemma 35 by replacing Fn

by M . Line (c) is due to Lemma 40. By dividing both sides of the inequality by N and then

take the limit, we have

R ≤ lim
N→∞

1

N
max
s0

I(Xn → Y n||Zn−1|s0) + log |S|+ 1 +NP (N)
e R

=C̄noisyfb

≤
[
C̄noisyfb,n +

log |S|
n

]
where the last inequality follows from Theorem 43.

4.6 Conclusions

In this chapter, we studied the capacity of finite-alphabet channels with noisy feedback. We

characterized the capacity in terms of the residual directed information by invoking the code-

function representation used in Tatikonda and Mitter (2009). Then we provided a pair of upper

and lower bounds on the capacity, which are characterized in terms of the causal conditioning

directed information. Finally, we investigated finite state channels with noisy feedback and

provided a finite dimensional optimization upper bound on the capacity.
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CHAPTER 5. BOUNDS ON THE CAPACITY OF GAUSSIAN

CHANNELS WITH NOISY FEEDBACK

In this chapter, we turn our attention to Gaussian channels with additive Gaussian noisy

feedback.

5.1 Introduction

We consider a discrete-time Gaussian channel with additive Gaussian noise feedback as

shown in Fig.5.1. The additive Gaussian channel is modeled as

Yi = Xi +Wi i = 1, 2, · · ·

where the gaussian noise {Wi}∞i=1 satisfies Wn = {W1,W2, · · · ,Wn} ∼ Nn(0,Kw,n) for all

n ∈ Z+. Similarly, the additive Gaussian feedback is modeled as

Zi = Yi + Vi i = 1, 2, · · ·

where the gaussian noise {Vi}∞i=1 satisfies V n = {V1, V2, · · · , Vn} ∼ Nn(0,Kv,n) for all n ∈ Z+.

Noise {Wi}∞i=1 and {Vi}∞i=1 are assumed to be independent and Kw,n, Kv,n are assumed to be

nonsingular. Notice that we do not assumed stationarity of {Wi}∞i=1 and {Vi}∞i=1. For a code

of rate Rn and length n, we specify a (n, 2nRn) channel code as follows. M is an uniformly

distributed message index where M ∈ {1, 2, 3, · · · , 2nRn}. There exists an encoding process

Xi(M,Zi−1) for i = 1, 2, · · · , n (X1(M,Z0) = X1(M) ), with power constraint

1

n

n∑
i=1

EX2
i (M,Zi−1) ≤ P,

and a decoding function g:Y n → {1, 2, · · · , 2nRn} with an error probability satisfying

P (n)
e =

1

2nRn

2nRn∑
M=1

p(M 6= g(yn)|M) ≤ εn
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Figure 5.1 Gaussian channels with additive Gaussian noise feedback

where limn→∞ εn = 0. The objective of communication is to delivery M to the receiver at

highest code rate with arbitrarily small error probability.

For time-varying Gaussian channels with noisy feedback, the standard notion of Shannon

capacity may not exist. We thus define the n-block noisy feedback capacity Cnoisyfb,n by following

Cover’s definition (Theorem 1 in Cover and Pombra (1989)) on the n-block capacity of noiseless

feedback Gaussian channels.

Definition 45 (N-block Noisy Feedback Capacity) {Cnoisyfb,n }
∞
n=1 is an n-block noisy feedback

capacity sequence if there exists a sequence of (n, 2n(Cnoisyfb,n −ε)) codes with P
(n)
e → 0, as n→∞,

for ε > 0; conversely, for ε > 0, any sequence of (n, 2n(Cnoisyfb,n +ε)) codes has P
(n)
e bounded away

from zero for all n.

Note that the above statements hold in the special cases of non-feedback and noiseless

feedback with substitution of Cn (characterized in (5.1)) and Cfb,n (characterized in (5.3))

for Cnoisyfb,n , respectively. In sequel, “n-block capacity” is referred to “n-block noisy feedback

capacity” for convenience, unless specified otherwise. We define the noisy feedback Shannon

capacity

Cnoisyfb , lim
n→∞

Cnoisyfb,n
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if the limit exists. Note that this definition of Shannon capacity is obviously the supremum

of achievable rates and agrees with the conventional operational definition for the capacity of

memoryless channels without feedback.

In this chapter, we wish to derive upper and lower bounds on the n-block capacity Cnoisyfb,n for

arbitrary (stationary/nonstationary) Gaussian channels, and to find bounds on the Shannon

capacity Cnoisyfb for stationary Gaussian channels.

In retrospect, additive Gaussian channels have been studied since the birth of “Information

Theory”Shannon (1948). When there is no feedback (i.e. Zi = for all i), the channel input

Xi is independent of the previous channel outputs. The n-block non-feedback capacity is

characterized in Cover and Pombra (1989) as

Cn = max
tr(Kx,n)≤nP

1

2n
log

det (Kw,n + Kx,n)

det Kw,n
(5.1)

where the maximum is taken over all positive semidefinite matrices Kx,n. If we assume the

stationarity on the process {Wi}∞i=1, it is well-known that the nonfeedback (Shannon) capacity

is characterized by water-filling on the noise power spectrum. Specifically,

C =
1

4π

∫ π

−π
log

max{Sw(eiθ), λ}
Sw(eiθ)

dθ (5.2)

where Sw(eiθ) is the power spectrum density of the stationary noise process {Wi}∞i=1. The

water level λ should satisfy

1

2π

∫ π

−π
max{0, λ− Sw(eiθ)}dθ = P.

Note that the initial idea of water-filling should be attributed to Shannon Shannon (1949).

When there is a noiseless feedback (i.e. Zi = Yi−1 for all i), the n-block feedback capacity is

notably characterized in Cover and Pombra (1989) as

Cfb,n = max
Bn,Ks,n

1

2n
log

det ((In + Bn)Kw,n(In + Bn)T + Ks,n)

det Kw,n
(5.3)

where the maximum is taken over all positive semidefinite matrices Ks,n and all strictly lower

triangular matrices Bn satisfying

1

n
tr(Ks,n + BnKw,nB

T
n ) ≤ P. (5.4)
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Similar to the nonfeedback case, if we assume the stationarity on the process {Wi}∞i=1, the

noiseless feedback (Shannon) capacity is characterized in Kim (2010) as

Cfb = sup
Ss,B

1

4π

∫ π

−π
log

Ss(eiθ) + |1 + B(eiθ)|2Sw(eiθ)

Sw(eiθ)
dθ, (5.5)

with power constraint

1

2π

∫ π

−π
Ss(eiθ) + |B(eiθ)|2Sw(eiθ)dθ ≤ P. (5.6)

Here B(eiθ) represents all possible strictly causal linear filters. However, when there is an

additive Gaussian noise feedback as shown in Fig.5.1, the characterizations on the n-block

capacity Cnoisyfb,n or the capacity Cnoisyfb under stationarity assumption on the Gaussian noise has

not been developed yet, to the present author’s knowledge.

So far, only few papers have addressed noisy Gaussian feedback problem or its variations.

Chance and Love (2010) and Li and Elia (2011a) took Cover-Pombra scheme into account

for noisy feedback Guassian channels and derive the upper and lower bounds on its maximal

achievable rate. Other works focus on the additive white Gaussian noise (AWGN) channel with

AWGN feedback, whose capacity is known to be the nonfeedback capacity. For example, Kim

et al. (2007) derived the upper and lower bounds on the reliability function and shows that,

noise in the feedback link renders the noisy feedback communication fundamentally different

from the noiseless feedback case. Wyner (1969),Martins and Weissman (2008) and Chance

and Love (2011a) proposed specific coding/decoding schemes based on the notable Schalkwijk-

Kailath Scheme (Schalkwijk and Kailath (1966)).

In this chapter, we derive a pair of n-block upper and lower bounds, denoted as C̄noisyfb,n

and Cnoisyfb,n , on the n-block capacity Cnoisyfb,n . The main feature of these n-block bounds is that

they can be characterized as convex optimization problems and obtained efficiently by using

standard optimization tools (e.g. semi-definite programming). Next, we consider stationary

Gaussian channels with stationary Gaussian noise feedback, for which the Shannon capacity

Cnoisyfb may exist, and if Cnoisyfb exists, we have

lim inf
n→∞

Cnoisyfb,n ≤ C
noisy
fb ≤ lim sup

n→∞
Cnoisyfb,n . (5.7)
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Applying the proposed n-block upper and lower bounds, we have

lim inf
n→∞

Cnoisyfb,n ≤ lim inf
n→∞

Cnoisyfb,n ≤ C
noisy
fb

≤ lim sup
n→∞

Cnoisyfb,n ≤ lim sup
n→∞

C̄noisyfb,n .

(5.8)

Following Kim’s approach on the stationary Gaussian channels with noiseless feedbackKim

(2010), we show that the limits of the n-block upper and lower bounds exist and can be charac-

terized as a power spectral optimization problem (i.e. a single infinite dimensional optimization

problem). However, solving these power spectral optimization problems is notoriously diffi-

cult in general. Then we develop some results to evaluate/bound these characterizable limit

values of C̄noisyfb,n and Cnoisyfb,n . Next, we use two approaches to obtain a lower bound on the

lim infn→∞C
noisy
fb,n , which clearly is a lower bound on Shannon capacity Cnoisyfb : 1) By using

supperadditive property of a sequence, we prove that for all n ≥ 1,

Cnoisyfb,n ≤ lim
n→∞

Cnoisyfb,n , (5.9)

2) We propose a control-oriented (LQG control) linear coding scheme for a new noiseless feed-

back Gaussian channel whose achievable rate is guaranteed to be a lower bound on Cnoisyfb .

To end this section, we present some preliminary results which will be used later in this

chapter.

Firstly, the entropy-maximization lemma is presented as follows.

Lemma 46 (Cover and Thomas (2006)) Let the random vector Xn ∈ Rn have zero mean and

covariance Kx,n = EXnXnT (i.e. Kx,n(i, j) = EXiXj, 1 ≤ i, j ≤ n). Then

h(Xn) ≤ 1

2
log(2πe)n det Kx,n

with equality if and only if Xn ∼ Nn(0,Kx,n).

We next recall the Schur complement. We refer the interested readers to Appendix A in

Boyd and Vandenberghe (2004) for a comprehensive introduction on the Schur complement

decomposition.

Definition 47 (Schur Complement) Consider an n× n symmetric matrix X partitioned as

X =

 A B

BT C

 .
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If detA 6= 0, the matrix

S = C −BTA−1B

is called the Schur complement of A in X.

We present some properties of the Schur complement as follows.

1. detX = detA · detS.

2. X � 0 if and only if A � 0 and S � 0.

3. If A � 0, then X � 0 if and only if S � 0.

5.2 Information Flow Revisited

With the ultimate long-term objective to find the capacity of the noisy feedback channels,

it is of importance to understand how extraneous information (e.g. message, additive noise)

is delivered to the decoder through the forward channel and how they interfere with each

other. In this section, we revisit the information flow decomposition equality, which unveils the

information flow pattern in additive Gaussian channels with additive Gaussian noise feedback.

As a natural application of this decomposition, we next derive an upper bound on I(M ;Y n),

the superior limit of which is an upper bound on the noisy feedback capacity according to

Fano’s inequality. Now, we recall a result, Corollary 22, in Chapter 3.

Corollary 48 For additive Gaussian channels with additive Gaussian noise feedback, as shown

in Fig.5.1,

I(Xn → Y n) = I(M ;Y n) + I(V n−1;Y n) + I(M ;V n−1|Y n).

With this corollary in hand, we now derive an upper bound on the n-block capacity. Con-

sider a channel code with rate Rn and length n, we begin with Fano’s inequality on the entropy

H(M |Y n), specifically,

nRn =H(M)

=H(M |Y n) + I(M ;Y n)

≤I(M,Y n) + nεn
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where εn → 0 if Pe(n) → 0. As Rn refers to any achievable rate, this inequality implies an

upper bound, 1
n max I(M ;Y n), on the n-block capacity Cnoisyfb,n . However, how to characterize

I(M ;Y n) in a noisy feedback setting is still unknown. Now, based on Corollary 22, we have

I(M ;Y n) =I(Xn → Y n)− I(V n−1;Y n)− I(M ;V n−1|Y n)

≤I(Xn → Y n)− I(V n−1;Y n),

which indicates that I(Xn → Y n) − I(V n−1;Y n) is an upper bound on I(M ;Y n). The next

theorem shows that this upper bound can be represented in single term, I(Xn → Y n|V n−1),

instead of the substraction of two information quantities. Clearly, 1
n max I(Xn → Y n|V n−1) is

an upper bound on the n-block capacity.

Theorem 49 For additive Gaussian channels with additive Gaussian noise feedback, as shown

in Fig.5.1,

I(M ;Y n) = I(Xn → Y n|V n−1)− I(M ;V n−1|Y n)

Furthermore, we have

I(Xn → Y n|V n−1) = h(Y n|V n−1)− h(Wn).

Remark 50 Two main advantages of using I(Xn → Y n|V n−1) as an upper bound on I(M ;Y n)

are discussed below,

1. The value of I(Xn → Y n|V n) only dependents on channel input distributions

{f(xi|xi−1, yi−1 + vi−1)}∞i=1 instead of particular codewords, which might significantly re-

duce the computation complexity.

2. Based on the equality

I(Xn → Y n|V n−1) = I(Xn → Y n)− I(V n−1;Y n),

we clearly have

I(M ;Y n) ≤ I(Xn → Y n|V n−1) ≤ I(Xn → Y n).
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This indicates that I(Xn → Y n|V n−1) is a better upper bound than I(Xn → Y n), which

is widely used in characterizing the capacity of noiseless feedback channels. Note that in

noiseless feedback case, I(M ;Y n) = I(Xn → Y n).

To prove this theorem, we need a lemma as follows.

Lemma 51 For Gaussian channels with Gaussian noise feedback as shown in Fig.5.1, we have

1. h(Y n||V n−1) = h(Y n|V n−1)

2. I(Xn → Y n||V n−1) = I(Xn → Y n|V n−1)

Proof. See Appendix.

Now, we show the proof of Theorem 49.

Proof. First of all, we have

I(Xn → Y n||V n−1)

=

n∑
i=1

I(Xi;Yi|Y i−1, V i−1)

=

n∑
i=1

h(Yi|Y i−1, V i−1)− h(Yi|Xi−1, Y i−1, V i−1)

=h(Y n||V n−1)−
n∑
i=1

h(Yi|Xi−1, Y i−1, V i−1)

=h(Y n|V n−1)−
n∑
i=1

h(Yi|Xi−1, Y i−1, V i−1)

where the last line uses Lemma 51 (1). Next,

I(Xn → Y n|V n−1)

=

n∑
i=1

I(Xi;Yi|Y i−1, V n−1)

=
n∑
i=1

h(Yi|Y i−1, V n−1)− h(Yi|Xi−1, Y i−1, V n−1)

=h(Y n|V n−1)−
n∑
i=1

h(Yi|Xi−1, Y i−1, V n−1)
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Based on Lemma 51(2), it is straightforward to have

n∑
i=1

h(Yi|Xi−1, Y i−1, V i−1) =
n∑
i=1

h(Yi|Xi−1, Y i−1, V n−1).

Now, we are ready to show

I(Xn → Y n)− I(V n−1;Y n) = I(Xn → Y n|V n−1).

That is,

I(Xn → Y n)− I(V n−1;Y n)

=

n∑
i=1

I(Xi;Yi|Y i−1)− I(V n−1;Y n)

=

n∑
i=1

h(Yi|Y i−1)− h(Yi|Xi, Y i−1)− I(V n−1;Y n)

=

n∑
i=1

h(Yi|Y i−1)− h(Yi|Xi, Y i−1, V i−1)− I(V n−1;Y n)

(a)
=h(Y n)−

n∑
i=1

h(Yi|Xi, Y i−1, V n−1)− h(Y n) + h(Y n|V n−1)

=
n∑
i=1

h(Yi|Y i−1, V n−1)−
n∑
i=1

h(Yi|Xi, Y i−1, V n−1)

=
n∑
i=1

I(Xi, Yi|Y i−1, V n−1)

=I(Xn → Y n|V n−1)

where line (a) follows from equation (5.2). Next, based on the line before line (a), we have

I(Xn → Y n|V n−1)

=
n∑
i=1

h(Yi|Y i−1)− h(Yi|Xi, Y i−1, V i−1)− I(V n−1;Y n)

=

n∑
i=1

h(Yi|Y i−1, V n−1)− h(Yi|Xi, Y i, V i−1)

(b)
=h(Y n|V n−1)− h(Xi +Wi|W i−1, Xi, Y i−1, V i−1)

(c)
=h(Y n|V n−1)− h(Wi|W i−1)

=h(Y n|V n−1)− h(Wn)

where line (b) follows from Yi = Xi + Wi, and line (c) follows from the Markov chain Wi −

W i−1 − (Xi, Y i−1, V i−1) which holds due to the causality of these random variables.
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5.3 Upper Bound Characterization

In light of Theorem 49, in this section, we characterize an upper bound C̄noisyfb,n on the n-block

capacity Cnoisyfb,n for arbitrary Gaussian channels with noisy feedback. It is shown that C̄noisyfb,n can

be obtained by solving a convex optimization problem. Next, we consider stationary Gaussian

channels for which the Shannon capacity may exist. We characterize lim supn→∞ C̄
noisy
fb,n as an

infinite dimensional optimization problem, providing an upper bound on the Shannon capacity,

if it exists. We then provide some preliminary results which are helpful to numerically evaluate

lim supn→∞ C̄
noisy
fb,n .

5.3.1 Upper Bound On The N-block Capacity

In this subsection, we wish to show the following Theorem.

Theorem 52 Consider an additive Gaussian noise channel with additive Gaussian noise feed-

back as shown in Fig.5.1. An upper bound C̄noisyfb,n on the n-block capacity (Definition 45) can

be obtained by solving

maximize
Bn,Ks,n

1

2n
log

det ((In + Bn)Kw,n(In + Bn)T + Ks,n)

det Kw,n

subject to tr(Ks,n + Bn(Kv,n + Kw,n)BT
n ) ≤ nP

Ks,n ≥ 0, Bn is strictly lower triangular.

(5.10)

Remark 53 We see that 5.10 is a generalization of the well know formula for noiseless feed-

back. Compared with noiseless feedback formula (5.3), we find that the feedback noise covariance

Kv,n only appears in the power constraint. When Kv,n is small (in the positive semi-definite

cone), the n-block capacity intuitively converges to the n-block noiseless feedback capacity. As

it is shown in (5.10), this proposed n-block upper bound also converges to the n-block noise-

less feedback capacity and, therefore, the upper bound should be tight. When Kv,n is large

(in the positive semi-definite cone), the matrix Bn would be close to a zero matrix. This im-

plies the feedback is almost “shut-off” (to be seen from the simulation results) and this upper

bound characterization converges to the n-block non-feedback capacity characterization (formula

(5.1)). Thus, this bound is tight in the regime of both small and large feedback noise V .
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The next result shows that the above optimization problem can be transformed into a

convex form which can be efficiently solved by the standard semidefinite programming.

Corollary 54 The upper bound C̄noisyfb,n on the n-block noisy feedback capacity can be obtained

by solving the following convex optimization problem,

maximize
Hn,Bn

1

2n
log det

K−1
v,n BT

n

Bn Hn

− 1

2n
log det(K−1

v,nKw,n)

subject to tr(Hn −Kw,nB
T
n −BnKw,n −Kw,n) ≤ nP

Hn In + BT
n BT

n

In + Bn K−1
w,n 0n

Bn 0n K−1
v,n

 ≥ 0

Bn is strictly lower triangular.

The complexity of computing the above convex optimization problem is evaluated in the

following proposition.

Proposition 55 The complexity of solving the linear matrix inequality(LMI) optimization

problem in Corollary 54 is upper bounded by

O(
81

8
n7 − 27

4
n6 +

3

4
n4 − 1

8
n3).

Proof. See Appendix.

In the rest of this subsection, we show the proof of Theorem 52. The basic idea of the proof

is as follows. Based on Theorem 49 and Fano’s inequality, it is known that 1
n max I(Xn →

Y n|V n−1) is an upper bound on the n-block noisy feedback capacity Cnoisyfb,n where the max

is taken over all admissible coding schemes1. We propose a Cover-Pombra(CP)-like coding

scheme and show that the maximization over the CP-like scheme does not lose optimality.

Then characterize 1
n max I(Xn → Y n|V n−1) under CP-like scheme results in formula (5.10).

1“admissible” means that the power constraint is satisfied.
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5.3.1.1 Cover-Pombra(CP)-like Coding Scheme

The CP-like scheme consists of linear encoding of the feedback signal and Gaussian signal-

ing of the message, as shown in a vector form in Fig.5.2. Specifically,

The channel input signal: Xn = Sn + Bn(Wn + V n),

The channel output signal: Y n = Sn + Bn(Wn + V n) +Wn,

The power constraint: tr(Ks,n + Bn(Kw,n + Kv,n)BT
n ) ≤ nP ,

where Sn = {S1, S2, · · · , Sn} ∼ Nn(0,Ks,n) is the message information vector and independent

from V n and Wn. Bn is an n × n strictly lower triangular linear encoding matrix. Note that

the one-step delay in the feedback link is captured by the particular structure of matrix Bn.

Remark 56 This CP-like coding scheme can be specifically expressed as a concatenated coding

scheme as shown in Fig. 5.3, which can be verified by checking the channel inputs and outputs.

The outer encoder E1 maps each message index to a vector sn which is drawn from the distri-

bution Nn(0,Ks,n). The inner encoder linearly takes the message information vector and the

feedback information to produce channel inputs.

5.3.1.2 Proof of Theorem 52

Now we show the proof of Theorem 52, that is, any (n, 2n(C̄noisyfb,n +ε)) noisy feedback channel

codes have probability of error P
(n)
e bounded away from zero.

Proof. According to Definition 45, we wish to show that a sequence of (n, 2nRn) channel
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Figure 5.2 Gaussian channels with additive Gaussian noise feedback(Gaussian signalling and

linear feedback)

Figure 5.3 A concatenated coding representation of CP-like Scheme. The inner linear encoder

can be also interpreted as a portion of the equivalent non-feedback channel.
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codes with Pe(n) → 0 must have Rn ≤ C̄noisyfb,n + δn where δn → 0. By Fano’s inequality,

nRn =H(M)

=H(M |Y n) + I(M ;Y n)

=I(M,Y n) + nδn

where δn → 0 if Pe(n) → 0. Then, by Theorem 49,

nRn =I(Xn → Y n|V n−1)− I(M ;V n|Y n) + nδn

≤I(Xn → Y n|V n−1) + nδn

=h(Y n|V n−1)− h(Wn) + nδn

≤ maximize
all admissible coding schemes

h(Y n|V n−1)− h(Wn) + δn

Denote

C̄noisyfb,n = maximize
all admissible coding schemes

h(Y n|V n−1)− h(Wn). (5.11)

We next show that maximizing h(Y n|V n−1) − h(Wn) over CP-like coding schemes (Fig.5.2)

does not lose the optimality. That is,

maximize
all admissible coding schemes

1

n
(h(Y n|V n−1)− h(Wn))

= maximize
CP-like scheme

1

n
(h(Y n|V n−1)− h(Wn))

Since we can not affect the noise entropy (i.e. h(Wn)), we need to maximize h(Y n|V n−1)

over all admissible channel inputs {Xi}ni=1. First of all, we have

h(Y n|V n−1) = h(Y n, V n−1)− h(V n−1).

Based on Lemma 46, the random variables (Y n, V n−1) should be jointly Gaussian in order to

maximize h(Y n, V n−1). As V n−1 has Gaussian distribution, Y n must be Gaussian. Further-

more, since Wn is Gaussian and Y n = Xn+Wn, it suffices to construct Xn satisfying Gaussian

distribution. Another fact is that Xn should depend on Wn−1 + V n−1 instead of Wn−1 and

V n−1 individually since the channel outputs are fed back to the encoder without any encoding.

Therefore, the most general normal causal dependence of Xn on the previous feedback infor-

mation Y n−1 +V n−1 satisfying the above arguments is in the form of Xn = Sn+Bn(Wn+V n)
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where Bn is strictly lower-triangular matrix. Then we have

h(Y n|V n−1)− h(Wn)

=h(Sn + Bn(Wn + V n) +Wn|V n−1)− h(Wn)

(a)
=h(Sn + (Bn + In)Wn|V n−1)− h(Wn)

(b)
=h(Sn + (Bn + In)Wn)− h(Wn)

where line (a) uses the fact, as Bn is a strictly lower-triangular matrix, BnV
n only depends

on V n−1. Line (b) follows from the independence of Sn and Wn on V n−1. By Lemma 46, it is

straightforward to obtain

Rn ≤ C̄noisyfb,n + δn,

which implies that

Cnoisyfb,n ≤ C̄
noisy
fb,n + δn.

Remark 57 The CP-like coding scheme may not be the optimal (capacity-achieving) coding

scheme for noisy feedback Gaussian channels. We herein adopt this coding scheme only because

it can nicely characterize the proposed n-block upper bound. Note that the CP-like scheme may

not apply if we look at a different upper bound.

5.3.2 Characterization Under Stationary Gaussian Noises

In this subsection, we add stationarity assumption to additive Gaussian noises. Then the

Shannon capacity Cnoisyfb , if it exists, is upper bounded as

Cnoisyfb ≤ lim sup
n→∞

Cnoisyfb,n ≤ lim sup
n→∞

C̄noisyfb,n . (5.12)

We show that limn→∞ C̄
noisy
fb,n exists and can be characterized as a single infinite dimensional

optimization problem.

Theorem 58 Assume that {Wi}∞i=1 and {Vi}∞i=1 are stationary processes. Then the limit of

the proposed n-block upper bound (5.10) exists and can be characterized as

C̄noisyfb = sup
Ss,B

1

4π

∫ π

−π
log

Ss(eiθ) + |1 + B(eiθ)|2Sw(eiθ)

Sw(eiθ)
dθ (5.13)
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with power constraint

1

2π

∫ π

−π
Ss(eiθ) + |B(eiθ)|2(Sw(eiθ) + Sv(eiθ))dθ ≤ P. (5.14)

Here, Sw(eiθ) and Sv(eiθ) are the power spectral density of {Wi}∞i=1 and {Vi}∞i=1, respectively,

and the maximization is taken over all power spectral density Ss(eiθ) ≥ 0 and strictly causal

linear filter B(eiθ) =
∑∞

k=1 bke
ikθ.

The proof invokes and extends Kim’s approach in Kim (2010) to noisy feedback settings by

replacing directed information by conditional directed information. We present the details of

the proof in Appendix.

As it is shown, the limit value C̄noisyfb is characterized by a single infinite dimensional

optimization problem that is in general difficult to solve. This is not unexpected, as the

characterization for noiseless feedback has similar difficulties and has been computed so far

only for the 1st-order autoregressive moving average (ARMA(1)) stationary Gaussian channel

model. In the noisy feedback setting, even this case is not easily computable. Next, we use

Riemann approximation approach to evaluate C̄noisyfb . Specifically, the region [−π, π] is divided

into (sufficiently large) n equal partitions. For the j-th partition (j = 0, 1, 2, · · · , n), we define

uj = log
sj + |1 + aj + ibj |2sw,j

sw,j

where sj , sw,j and aj + ibj are the value of Ss(eiθ), Sw(eiθ) and B(eiθ) evaluated at θ =

2π
n j − π, respectively. Note that evaluate B(eiθ) by aj + ibj does not capture the causality of

the filter B(eiθ). Therefore, in order to have an accurate approximation we need to add causality

constraints in terms of aj and bj on the filter. The initial attempt goes to the properness of

the open-system and the induced property on the sensitivity function. Specifically, for “strictly

proper” systems with feedback, we have the following fact,∫ 1
2

− 1
2

|S(e2πθ)|2dθ = 1 +

∫ 1
2

− 1
2

|T (e2πθ)|2dθ (5.15)

where S and T represent the sensitivity function and complementary sensitivity function, re-

spectively. We refer the interested readers to the vast literature on the proof of this equality.

By applying this equality to the CP-like feedback system described in 5.3.1.1 (See Fig.5.3), the
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sensitivity function of the feedback CP-like system (n → ∞) is 1 + B and the complementary

function is B. According to the above equality and the notation B(eiθ) = a(θ) + ib(θ), we have∫ 1
2

− 1
2

|1 + a(θ) + ib(θ)|2dθ = 1 +

∫ 1
2

− 1
2

|a(θ) + ib(θ)|2dθ. (5.16)

After some algebra we have the following constraint∫ 1
2

− 1
2

a(θ)dθ = 0. (5.17)

By using Riemann approximation,
n∑
j=1

aj = 0. (5.18)

Putting above together, the optimization problem (5.13) can be reformulated by using

Riemann approximation as

Unoisyfb = sup
sj ,aj ,bj ,j=1,2,··· ,n

1

4π

n∑
j=1

uj (5.19)

with power constraint

n∑
j=1

aj = 0, sj > 0,

1

2π

n∑
j=1

sj + |aj + ibj |2(sw,j + sv,j) ≤ P.
(5.20)

where sv,j is the value of Sv(eiθ) evaluated at θ = 2π
n j − π.

According to Wang and Elia (2011), the above optimization problem can be efficiently

solved in a distributed fashion. Notice that the optimization problem 5.19 is not equivalent

to the original problem (5.13) even with n → ∞. This is because we do not fully capture

the causality constraint on B(eiθ) =
∑∞

k=1 bke
ikθ although we already consider the closed-loop

constraint on causal feedback systems. Thus, the objective value Unoisyfb with sufficient large n

is an upper bound on C̄noisyfb . A future research will focus on exploring the causality constraints

(represented in the frequency domain) such that the approximation is as accurate as possible. A

promising attempt will go to the Hilbert transform, which can be used to determine a system’s

causality from its frequency response. Wether this additional constraint will lead to a desired

approximation on C̄noisyfb , however, remains to be seen.
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5.3.2.1 Properties of Sequence C̄noisyn,fb

With the objective to obtain the exact value of C̄noisyfb , in what follows, we provide some

preliminary results on the properties of the sequence C̄noisyn,fb (n = 1, 2, · · · ), which probably can

be used to evaluate C̄noisyfb in the future research.

Lemma 59 Assume the Gaussian noises {Wi}∞i=1 and {Vi}∞i=1 are stationary. Then

C̄noisyfb = lim
n→∞

C̄noisyfb,n = sup
n
C̄noisyfb,n

for all n ≥ 1. This further implies C̄noisyfb ≥ C̄noisyfb,n for all n ≥ 1.

Proof. See Appendix.

This lemma indicates that the limit value C̄noisyfb is lower bounded by any n-block value

C̄noisyfb,n . For a fixed relatively small n, C̄noisyfb,n can be obtained efficiently according to Corollary

54. However, we know that this numerical value is a lower bound on the upper bound of the

capacity, which itself is not helpful to evaluate the capacity. In the next lemma, we show that

the n-block value C̄noisyfb,n exponential-block-wise increasingly converges to the limit value C̄noisyfb .

In addition, The convergence trend is exponential-block-wise flatten.

Lemma 60 Assume the Gaussian noises {Wi}∞i=1 and {Vi}∞i=1 are stationary. Then for any

fixed n ≥ 1, we have

C̄noisyfb,n ≤ C̄
noisy
fb,kn

for all k ≥ 1. Furthermore, for a fixed n, let ∆k = C̄noisy
fb,2k+1n

− C̄noisy
fb,2kn

, we have

lim
k→∞

∆k = 0.

Based on the above two lemmas, we conclude that the sequence of {C̄noisyfb,n }
∞
i=1 is exponential-

block-wise increasing and converges to C̄noisyfb . However, how to evaluate C̄noisyfb through C̄noisyfb,n

remains to be seen.
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5.4 Lower Bound Characterization

In this section, we provide a lower bound Cnoisyfb,n on the n-block capacity for time-varying

Gaussian channels. We show that Cnoisyfb,n can be obtained by solving a convex optimization

problem. Then we consider the stationary Gaussian channels and show that limn→∞C
noisy
fb,n

exists and can be represented as a single infinite dimensional optimization problem. Accord-

ing to (5.8), we know limn→∞C
noisy
fb,n is a lower bound on Cnoisyfb . However, this limit value

is not easy to obtain in general. We next provide two computable lower bounds on this limit

value and thus give computable lower bounds on Cnoisyfb . Note that, different from the litera-

ture of deriving lower bounds (i.e. achievable rates), we herein use a novel approach to find

a lower bound instead of proposing a specific coding scheme for the noisy feedback channel,

namely, our lower bound is not restricted to any specific coding scheme. The motivation of

this novel approach is stated as follows: because linear coding schemes may not achieve any

positive transmission rate for noisy feedback channels 2, propose a specific coding scheme with

positive rate may not be an efficient or doable approach to obtain a lower bound on the capacity.

5.4.1 Lower Bound On The N-block Capacity

Now, we present a lower bound Cnoisyfb,n on the n-block capacity Cnoisyfb,n .

Theorem 61 Consider the noisy feedback Gaussian channels in Fig. 5.1, and a noiseless

feedback Gaussian channels with additive noise {Wi + Vi}∞i=1 where noises Wi and Vi have

the identical statistical properties as that in the noisy feedback settings. See Fig. 5.5 (right)

for a vector-representation of this new channel. Denote C
(w+v)
fb,n as the n-block capacity of this

noiseless feedback Gaussian channel, then

Cnoisyfb,n ≥ C
(w+v)
fb,n

with

C
(w+v)
fb,n = max

Bn,Ks,n

1

2n
log

det ((In + Bn)Kwv,n(In + Bn)T + Ks,n)

det Kwv,n
, (5.21)

2this statement was proved for the case of AWGN channel with AWGN feedback in Kim et al. (2007).
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where Kwv,n = Kv,n + Kw,n and the maximum is taken over all positive semidefinite matrices

Ks,n and all strictly lower triangular matrices Bn satisfying

1

n
tr(Ks,n + BnKwv,nB

′
n) ≤ P.

In sequel, we denote Cnoisyfb,n = C
(w+v)
fb,n as a lower bound on Cnoisyfb,n .

Remark 62 This lower bound is tight when Kv,n is small (in the positive semi-definite cone)

and becomes loose as Kv,n increases. Note that this lower bound becomes useless when it is

below the corresponding n-block nonfeedback capacity.

Remark 63 For a fixed n, the characterization of C
(w+v)
fb,n is obtained by

C
(w+v)
fb,n =

1

n
max

addimissiable coding scheme
h(Y n)− h(Wn + V n)

where Y n is the channel outputs in Fig.5.5(right). In addition, it is known that Cover-Pombra

scheme achieves this n-block noiseless feedback capacity. The statements in this remark are

justified in Cover and Pombra (1989).

According to Vandenberghe et al. (1998), the above optimization problem can be trans-

formed into the following convex form. The proof is omitted as it directly follows from the

proof in Vandenberghe et al. (1998).

Corollary 64 The lower bound Cnoisyfb,n on the n-block noisy feedback capacity can be obtained

by solving the following convex optimization problem,

maximize
Hn,Bn

1

2n
log det Hn −

1

2n
log det Kwv,n

subject to tr(Hn −Kwv,nB
T
n −BnKwv,n −Kwv,n) ≤ nP, Hn In + BT
n

In + Bn K−1
wv,n

 ≥ 0,

Bn is strictly lower triangular.
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Figure 5.4 New constructed Gaussian channel with noisy feedback

Similarly, the complexity of solving Corollary 64 is evaluated in the following proposition.

Proposition 65 The complexity of solving the LMI-optimization problem in Corollary 64 is

upper bounded by

O(
81

8
n7 +

27

8
n6 − 3

8
n4 − 1

8
n3).

The proof directly follows from that of Proposition 55 with M = 2n+ 1 and N = 3
2n

2− 1
2n.

In what follows, we show the proof of Theorem 61. First of all, we need a lemma as follows.

Lemma 66 Let A � 0 and C � B � 0, then

log
det (A + B)

det B
≥ log

det (A + C)

det C

Proof. See Appendix.

Now, we present the proof of Theorem 61.

Proof. We first apply the CP-like scheme to the noisy feedback Gaussian channels. Let rn be

the optimal objective value of the following optimization problem,

max
Bn,Ks,n

1

2n
log

det (In + Bn)Kw,n(In + Bn)T + BnKv,nB
T
n + Ks,n

det (In + Bn)Kw,n(In + Bn)T + BnKv,nBT
n

s.t tr(Ks,n + Bn(Kv,n + Kw,n)BT
n ) ≤ nP,

Ks,n ≥ 0, Bn is strictly lower triangular.

(5.22)
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By invoking the random coding argument used for the achievability proof in Cover and Pombra

(1989), we have an achievability result that, under CP-like scheme, there exists a sequence of

(n, 2(rn−ε)) channel codes with Pne → 0 as n → ∞, for any ε. The proof of this achievablility

result is omitted since it directly follows from the achievability proof in Cover and Pombra

(1989). Thus, according to the definition of Cnoisyfb,n , we clearly have Cnoisyfb,n ≥ rn.

We next show rn ≥ C(w+v)
fb,n . Denote (B∗n,K

∗
s,n) as an optimal solution of (5.21). Define

Kṽ,n = (In − (In + B∗n)−1)Kv,n(In − (In + B∗n)−1)T . (5.23)

We clearly have matrix Kv � Kṽ. According to Lemma 66, we have

C
(w+v)
fb,n =

1

2n
log

det ((In + B∗n)(Kw,n + Kv,n)(In + B∗n)T + K∗s,n)

det (Kw,n + Kv,n)

=
1

2n
log

det ((In + B∗n)(Kw,n + Kv,n)(In + B∗n)T + K∗s,n)

det (In + B∗n)(Kw,n + Kv,n)(In + B∗n)T

≤ 1

2n
log

det ((In + B∗n)(Kw,n + Kṽ,n)(In + B∗n)T + K∗s,n)

det (In + B∗n)(Kw,n + Kṽ,n)(In + B∗n)T

=
1

2n
log

det ((In + B∗n)(Kw,n + Kṽ,n)(In + B∗n)T + K∗s,n)

det (Kw,n + Kṽ,n)
.

Denote rw,ṽ as the value of the formula in the last line. We have C
(w+v)
fb,n ≤ rw,ṽ. By substituting

(5.23) and using matrix inverse lemma, we have

rw,ṽ =
1

2n
log

det (In + B∗n)Kw,n(In + B∗n)T + B∗nKv,nB
∗
n
T + K∗s,n

det (In + B∗n)Kw,n(In + B∗n)T + B∗nKv,nB∗n
T

. (5.24)

Thus, rw,ṽ ≤ rn. Putting above together, we have

Cnoisyfb,n ≥ rn ≥ rw,ṽ ≥ C
(w+v)
fb,n

The proof is complete.

Remark 67 Instead of the mathematical proof, we present a heuristic proof of Theorem 61

which provides more insight in this lower bound. First of all, we consider a new channel with

noisy feedback as shown in Fig.5.4. An identical Gaussian noise V is added on the channel out-

put. Since the decoder is not allowed to access the new additive noise, any n-block achievable
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Figure 5.5 The equivalent Gaussian channel with noiseless feedback

rate of the new channel must be a lower bound on the n-block capacity Cnoisyfb,n of the origi-

nal channel as shown in Fig.5.1. We next apply the CP-like scheme (resulting in an n-block

achievable rate) to this new channel. As a result of the linear feedback scheme, we have the

equivalence as shown in Fig.5.5. It is easy to verify the equivalence by checking the channel

input and the information received by the decoder. It is known that the optimal CP-like scheme

has an achievable rate C
(w+v)
fb,n . Thus, we have Cnoisyfb,n ≥ C

(w+v)
fb,n .

5.4.2 Characterization under Stationary Gaussian Channels

In this section, we consider stationary Gaussian channels and characterize the limit of the

n-block lower bound which provides a lower bound on the Shannon capacity.

Theorem 68 Assume that {Wi}∞i=1 and {Vi}∞i=1 are stationary processes. Then the limit of

the proposed n-block lower bound (5.21) exists and can be characterized as

Cnoisyfb = sup
Ss,B

1

4π

∫ π

−π
log

Ss(eiθ) + |1 + B(eiθ)|2Swv(eiθ)
Swv(eiθ)

dθ (5.25)

with power constraint

1

2π

∫ π

−π
Ss(eiθ) + |B(eiθ)|2Swv(eiθ)dθ ≤ P. (5.26)

Here, Sw(eiθ) and Sv(eiθ) are the power spectral density of {Wi}∞i=1 and {Vi}∞i=1, respectively,

and Swv(eiθ) = Sw(eiθ) + Sv(eiθ). The maximization is taken over all power spectral density

Ss(eiθ) ≥ 0 and strictly causal linear filter B(eiθ) =
∑∞

k=1 bke
ikθ.
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Because the above formula is identical to the capacity formula for the noiseless feedback Gaus-

sian channels with additive Gaussian noise W̃i = Wi + Vi, the proof directly follows from Kim

(2010) and thus is omitted. In addition, all the existing solutions of (5.25) on the noiseless feed-

back capacity (e.g. when W̃i belongs to ARMA(1)) can be used to provide a lower bound on the

noisy feedback capacity. However, for arbitrarily stationary Gaussian channels with noiseless

feedback, the noiseless feedback capacity is not known yet and thus the lower bound Cnoisyfb

can not be evaluated. In what follows, we provide two approaches to obtain computable lower

bounds for arbitrary stationary Gaussian noise. The basic idea is to propose computable lower

bounds on Cnoisyfb instead of evaluating Cnoisyfb , which is a lower bound on the Shannon capacity.

5.4.2.1 N-block Lower Bound Approach

The first approach invokes the convergence property of super-additive sequence. In the next

lemma, we show that, for arbitrarily stationary Gaussian channels, the n-block lower bound

Cnoisyfb,n serves as a lower bound on the capacity Cnoisyfb , for any n ≥ 1. We refer readers to

Appendix for the introduction on the super-additive sequence and the proof of the lemma.

Lemma 69 Assume that the Gaussian noises {Wi}∞i=1 and {Vi}∞i=1 are stationary. Then

Cnoisyfb = lim
n→∞

Cnoisyfb,n = sup
n
Cnoisyfb,n

for all n ≥ 1. This further implies Cnoisyfb ≥ Cnoisyfb,n for all n ≥ 1.

5.4.2.2 LQG Control Approach

According to Theorem 68, we know that any achievable rate (less than or equal to Cnoisyfb )

of the new noiseless feedback Gaussian channel is a lower bound on the capacity of the original

noisy feedback Gaussian channel. Thus, we would like to point out that an alternative lower

bound can be computed using control-oriented coding schemes (Elia (2004); Ardestanizadeh

and Franceschetti (2012); Ardestanizadeh et al. (2012)) on the new noiseless feedback Gaussian

channel. See Fig. 5.6. The basic idea is to design controllers K that stabilize an unstable,
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Figure 5.6 LQG coding scheme: r ∈ Rm is a vector of white Gaussian noises with zero mean

and unit variance without loss of generality, and H is a stable LTI filter. M can

be treated as an initial condition of the system G, as described in Elia (2004);

Ardestanizadeh and Franceschetti (2012)

single-input-single-output(SISO), linear time-invariant (LTI) system G in feedback over the

given Gaussian channel using the smallest transmission power. For a system G with given

degree of instability, denoted by DI, the source information can be carried reliably (in the sense

of Shannon) through the Gaussian channel at a rate (arbitrarily close) to (at least) log(DI).

Note that this rate is independent from the average transmission power. Then the optimal

stabilizing controller K solves a classical LQG regulator problem and provides the smallest

transmission power for a given transmission rate. Note that this control-oriented approach is

well established in Elia (2004); Ardestanizadeh and Franceschetti (2012); Ardestanizadeh et al.

(2012) and a detailed description is outside the scope of this thesis. In the next section we

present a numerical example of its application.

5.5 Simulation Results

In this section, we present some simulations to verify our results. The forward channel is

assumed to be a 1st-order moving average (MV(1)) Gaussian process. Namely,

Wi = Ui + αUi−1

where Ui is a white Gaussian process with zero mean and unit variance. Note that a larger

α implies a more correlated channel noise or equivalently a Gaussian channel with stronger
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Figure 5.7 Capacity bounds for MV(1) channel with AWGN feedback.
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memory. Then

Kw,n(i, j) =
{ 1 + α2 i = j

α j = i± 1

0 else

1 ≤ i, j ≤ n.

The feedback channel is assumed to be an additive white Gaussian noise with Kv,n = σ2In.

The average transmission power is P = 10.

Consider α = 0.5 in our simulations. Fig.5.7 shows the capacity bounds w.r.t. the variance

of the feedback noise. The noiseless feedback capacity is obtained by solving a fourth-order

polynomial equation in Theorem 5.3 in Kim (2010), and the non-feedback capacity is obtained

by solving formula (5.2). For the lower bound on the noisy feedback capacity, we first applied

Lemma 69 with n = 40 and find out that the noisy feedback increases the capacity significantly

in the regime of small noise power in the feedback. In addition, we obtained another lower

bound by solving the LQG control problem as follows. See the new noiseless Gaussian channel

as shown in Fig.5.6. The new Gaussian noise w̃i = wi+vi can be characterized in the state-space

form as

H : xw̃[i+ 1] =

[
1 0

]u[i]

v[i]


w̃[i] = αxw̃[i] +

[
1 1

]u[i]

v[i]


We now constructed a single state unstable system G as

G : x[i+ 1] = ax[i] + ũi

yin[i] = x[i].

where a = −2R (R is a target achievable rate in prior). The lower bound plot is obtained by

adjusting R until the minimized average transmission power P ∗ = 10.

For the upper bound, we first show an interesting feature of the n-block upper bound w.r.t.

the block length n at feedback noise variance σ2 = 0.3, 0.5, 0.7. Fig. 5.8 shows that the n-block

upper bound monotonic-increasingly converge to the limit value, and the increase is very grad-

ual for n ≥ 30. To obtain an upper bound (i.e. the limit value of the n-block upper bound) on
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Figure 5.8 Convergence of the n-block upper bounds (σ2 = 0.3, 0.5, 0.7).

the Shannon capacity, we can only approximate it by looking at the n-block upper bound with

sufficiently large n. Due to the limited practical computing capability, we plotted the n-block

upper bound with n = 40 in Fig.5.7. Moreover, based on the curves shown in Fig. 5.8, we

expect that the curves in Fig. 5.8 will flatten with large n, while the curve of the limit value of

the n-block upper bound as function of sigma will maintain a similar convex shape as shown

in Fig.5.7. Next, we apply Riemann approximation to obtain an upper bound on the Shannon

noisy feedback capacity, which is slightly loose due to the lost of causality constraint on the

feedback filter. Combined with the lower bound, we may conclude that the noisy feedback

capacity is very sensitive to the feedback noise in MV(1) channel since the upper and lower

bound curves are dramatically decreasing as the feedback noise power increases.
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5.6 Conclusion

In this chapter, we extended the result of Cover-Pombra on the noiseless feedback Gaus-

sian channels to the noisy feedback Gaussian case. We considered the time-varying Gaussian

channels with Gaussian noise feedback. We defined the n-block noisy feedback capacity and

derived the lower and upper bounds which can be obtained by solving convex optimization

problems. By assuming stationarity on the Gaussian noises, we have characterized the limits

of the n-block upper and lower bounds, which are bounds on the noisy feedback Shannon ca-

pacity. We then used Riemann approximation to compute the upper bound and proposed two

approaches to obtain computable lower bounds on the noisy feedback capacity. We hope, the

results provided in this chapter could foster further advances toward the solution of the noisy

feedback capacity problems.
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CHAPTER 6. CAPACITY-ACHIEVING CODES FOR NOISY

FEEDBACK CHANNELS: A NECESSARY CONDITION

6.1 Introduction

As we have shown in the preceding chapters, by utilizing the information flow decomposi-

tion equality, we successfully provide multiple novel results on the capacity of channels with

noisy feedback. However, for certain class of channels, using (even noiseless) feedback may

not increase the channel capacity, namely, the feedback capacity is equal to the non-feedback

capacity which is already known in the literature. Let us name these class of channels as

feedback-unfavorable channels. For example, discrete memoryless channels (DMCs) are such a

well-known class of channels. For channels with memory, we have some examples as follows. In

Alajaji (1994) and Alajaji and Fuja (1994), it has been shown that feedback does not increase

the capacity of discrete channels with modulo additive noise and channels with memory satisfy-

ing the symmetry conditions, respectively. In Shrader and Permuter (2009), it has been shown

that for the compound Gilbert-Elliot channel, feedback does not increase capacity. Recently, it

is shown that for a class of symmetric finite-state Markov channels, feedback fails to increase

capacity (Sen et al. (2011)).

As the capacity for certain feedback-unfavorable channels with noisy feedback is already

known, we herein turn our attention to investigate capacity-achieving codes. Searching capacity-

achieving feedback code has been a hot topic since the introduction of “feedback communica-

tion” and, for the noiseless feedback case, some notable results have been obtained for feedback-

unfavorable channels, e.g., S-K feedback code for AWGN channels with noiseless feedback

(Schalkwijk and Kailath (1966)). However, a careful review finds that all existing capacity-

achieving feedback codes are not directly extendable to the noisy feedback settings. For ex-
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Figure 6.1 Communication channels with noisy feedback: feedback information is allowed to

be encoded.

ample, S-K feedback code can not achieve any positive rate for AWGN channels with AWGN

feedback (Kim et al. (2007)). The effort of searching capacity-achieving feedback code for

noisy feedback channels emerges recently, e.g., Chance and Love (2011b); Martins and Weiss-

man (2008).

In this chapter, we are interested in a high-level problem instead of searching specific

capacity-achieving code: is there a capacity-achieving feedback code for feedback-unfavorable

channels with noisy feedback? If yes, where is it? If no, why? In what follows, by using the

information flow decomposition equality, we derive a necessary condition on capacity-achieving

channel code, indicating that using noisy feedback is detrimental to the maximal achievable

rate (to be precise in the context).

6.2 Modeling and Preliminaries

We consider a feedback communication model as shown in Fig.6.1, the channel and the

feedback link at time instant i are modeled as p(yi|xi, yi−1) and p(zi|ui, zi−1), respectively.

Different from the models used for the proceeding chapters, we now allow another encoder to

produce feedback information instead of passively sending back the channel outputs. Specifi-

cally, we have message index m ∈ {1, 2, · · · , 2nR} where R refers to the transmission rate. At
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time instant i, the encoder E1 takes m and the past feedback information zi−1 to produce the

channel input xi = fi(m, z
i−1) and the encoder E2 takes the past channel outputs yi to produce

feedback input ui = gi(y
i). After n time instants, the decoder recovers the message index m̂

by processing channel outputs yn. The time ordering of these random variables are presented

below1.

M,X1, Y1, U1, Z1, · · · , Xn, Yn, Un, Zn, M̂ . (6.1)

For reader’s convenience, we recall the definition of Probabilistic Limit and provide some

related notations again, as follows.

Definition 70 (Probabilistic Limit) The limit superior in probability for any sequence (X1, X2, · · · )

is defined by

p- lim sup
n→∞

Xn = inf{α| lim
n→∞

Prob{Xn > α} = 0}

Similarly, the limit inferior in probability for any sequence (X1, X2, · · · ) is defined by

p- lim inf
n→∞

Xn = sup{β| lim
n→∞

Prob{Xn < β} = 0}

Given a time ordering of random variables (Xn, Y n, Zn) as shown in sequence (6.1),

I(X;Y ) , p- lim inf
n→∞

1

n
i(Xn;Y n)

= p- lim inf
n→∞

1

n
log

p(Xn, Y n)

p(Xn)p(Y n)

I(X → Y ) , p- lim inf
n→∞

1

n
i(Xn → Y n)

= p- lim inf
n→∞

log
−→p Y n|Xn(Y n|Xn)

pY n(Y n)

where
−→
P Y n|Xn(yn|xn) =

∏n
i=1 pYi|Xi,Y i−1(yi|xi, yi−1).

Now let us recall one useful lemma as follows.

Lemma 71 (Han (2003),Verdú and Han (1994)) For arbitrary sequence of random variables

{Xi}∞i=0 and {Yi}∞i=0,

1. p- lim infn→∞Xn ≤ p- lim supn→∞Xn.

1Notice that we do not put any constraint on random variables. Although we will restrict our exposition to
finite alphabets in this chapter, all results hold and can be derived in parallel for any abstract set (e.g. countably
infinite, continuous alphabets).



www.manaraa.com

79

2. p- lim infn→∞(−Xn) = −p- lim supn→∞Xn.

3. p- lim infn→∞(Xn + Yn) ≤ p- lim infn→∞Xn + p- lim supn→∞ Yn.

4. I(X;Y ) ≤ lim infn→∞ I(Xn, Y n).

As now we allow the feedback information to be encoded by another encoder at the receiver

side, we need re-define the channel code as follows.

Definition 72 (Channel Code) Consider a message m which is drawn from an index set

{1, 2, · · · , 2nR}, a communication channel (X n, {p(yi|xi, yi−1)}ni=1,Yn) with the interpretation

that Xi is the input and Yi is the output at time instant i (1 ≤ i ≤ n) and a feedback link

(Un, {p(zi|ui, zi−1)}ni=1,Zn) with the interpretation that Ui is the input and Zi is the output

at time instant i. Then a (n, 2nR, εn) channel code (εn → 0 as n → ∞) consists of an in-

dex set {1, 2, · · · , 2nR}, a sequence of encoding function fi: {1, 2, · · · , 2nR} × Zi−1 → Xi, a

sequence of encoding function gi: Y i → Ui, and a decoding function d: Yn → {1, 2, · · · , 2nR}

with probability of decoding error

1

2nR

2nR∑
m=1

p(m 6= d(yn)|m) ≤ εn.

6.3 Rate-Loss in Using Noisy Feedback

In this section, we aim to prove the following theorem.

Theorem 73 (A Necessary Condition) Consider the class of feedback-unfavorable channels

with noisy feedback. Then any capacity-achieving channel code must satisfy RL = 0 where

RL , I(Zn−1 → Y n).

Remark 74 As it is shown, the introduced non-negative value RL measures the information

rate from feedback outputs Z to channel outputs Y . Therefore, a channel code with RL = 0

indicates that the feedback information does not change the distribution of channel output

Y . This further implies that the channel encoder at the transmitter side does not nontriv-

ially/consistently use feedback. Note that if the feedback link is perfect (i.e. Zi = Ui for ∀i ), it
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is easy to obtain RL = 0. Moreover, if the encoder does not use the feedback or merely uses it

for finite time instants, we have RL = 0 as well.

Remark 75 This theorem indicates that it is impossible to find capacity-achieving channel

codes by nontrivially using feedback, whereas it is possible in the perfect feedback case (e.g.

Schalkwijk-Kailath scheme). Up to present, some feedback coding schemes for feedback-unfavorable

channels with noisy feedback have been proposed in the literature. For example, Martins and

Weissman (2008) has proposed a linear coding scheme for AWGN channel with bounded feed-

back noise and Chance and Love (2011b) has proposed a concatenated coding scheme for AWGN

channel with noisy feedback. However, these coding schemes cannot achieve the capacity un-

less, as discussed therein, the feedback additive noise is shrinking to zero (i.e. perfect feedback).

Therefore, roughly speaking, using noisy feedback is losing transmission rate. However, it is

well known that using (noisy) feedback can improve the reliability (i.e. error exponent) and/or

simplify the coding scheme. Thus, we need a tradeoff while using noisy feedback.

In what follows, we give some technical lemmas before proving the theorem. The first

lemma provides information flow decomposition equality (in terms of information density) for

the noisy feedback channel as shown in Fig. 6.1.

Lemma 76 (Key Lemma) For any positive integer n,

iXn,Y n(Xn → Y n) =iM,Y n(M,Y n) + iZn−1,Y n(Zn−1 → Y n)

+ iM,Y n,Zn−1(M,Zn−1|Y n)

(6.2)
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Proof. First of all, we have that, for every (m,xn, yn, zn, un) where xi = f i(m, zi−1)

and ui = gi(yi),

iM,Y n,Zn−1(m; (yn, zn−1))

= log
PY n,Zn−1|M (yn, zn−1|m)

PY n,Zn−1(yn, zn−1)

=

n∑
i=1

log
PYi,Zi−1|Y i−1,Zi−2,M (yi, zi−1|yi−1, zi−2,m)

PYi,Zi−1|Y i−1,Zi−2(yi, zi−1|yi−1, zi−2)

=
n∑
i=1

log

(
PYi|Y i−1,Zi−1,M (yi|yi−1, zi−1,m)

PYi|Y i−1,Zi−1(yi|yi−1, zi−1)
·
PZi−1|Y i−1,Zi−2,M (zi−1|yi−1, zi−2,m)

PZi−1|Y i−1,Zi−2(zi−1|yi−1, zi−2)

)
(a)
=

n∑
i=1

log
PYi|Y i−1,Zi−1,M (yi|yi−1, zi−1,m)

PYi|Y i−1,Zi−1(yi|yi−1, zi−1)

=
n∑
i=1

log
PYi|Y i−1,Zi−1,M,Xi(yi|yi−1, zi−1,m, xi)

PYi|Y i−1,Zi−1(yi|yi−1, zi−1)

(b)
=

n∑
i=1

log
PYi|Y i−1,Xi(yi|yi−1, xi)

PYi|Y i−1,Zi−1(yi|yi−1, zi−1)

= log
~PY n|Xn(yn|xn)

PY n(yn)
− log

~PY n|Zn−1(yn|zn−1)

PY n(yn)

=iXn,Y n(xn → yn)− iZn−1,Y n(zn−1 → yn)

where (a) and (b) follow from the causality of the channel and the feedback link. By using

chain rule,

iM,Y n,Zn−1(m; (yn, zn−1)) = iM,Y n(m; yn) + iM,Y n,Zn−1(m; zn−1|yn).

Putting above equations together,

iXn,Y n(xn → yn)− iZn−1,Y n(zn−1 → yn)

=iM,Y n(m; yn) + iM,Y n,Zn−1(m; zn−1|yn).

The proof is complete.

Lemma 77 For any (n, 2nR, εn) channel code,

I(M,Zn−1|Y n) = lim inf
n→∞

1

n
(M,Zn−1|Y n) = 0.



www.manaraa.com

82

The proof is presented in Appendix. Next, we recall a useful lemma (formula (6) in Alajaji

(1994)) as follows.

Lemma 78 Every (n, 2nR, εn) channel code satisfies

εn ≥ Prob{
1

n
i(M ;Y n) ≤ R− γ} − 2−γn

for every γ > 0.

Now, we are ready to prove Theorem 73.

Proof. Firstly, we show that for every (n, 2nR, εn) channel code

R ≤ I(M ;Y n). (6.3)

This can be proved by contradiction as did in Alajaji (1994). Assume that for some ρ > 0,

R = I(M ;Y n) + 2ρ. (6.4)

Using Lemma 78 with γ = ρ, we have

εn ≥ Prob{
1

n
i(M ;Y n) ≤ I(M ;Y n) + ρ} − 2−ρn.
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Obviously, the righthand term is not vanishing to zero as n→∞ which violates limn→∞ εn = 0.

Next, according to the inequality (6.3), we have

R ≤I(M ;Y n)

=p- lim inf
n→∞

{ 1

n
iM,Y n(M,Y n)}

(a)
=p- lim inf

n→∞
{ 1

n
iXn,Y n(Xn → Y n)− 1

n
iZn−1,Y n(Zn−1 → Y n)− 1

n
iM,Y n,Zn−1(M,Zn−1|Y n)}

(b)

≤p- lim inf
n→∞

{ 1

n
iXn,Y n(Xn → Y n)}+ p- lim sup

n→∞
{− 1

n
iZn−1,Y n(Zn−1 → Y n)}

+ p- lim sup
n→∞

{− 1

n
iM,Y n,Zn−1(M,Zn−1|Y n)}

(c)
=p- lim inf

n→∞
{ 1

n
iXn,Y n(Xn → Y n)} − p- lim inf

n→∞
{ 1

n
iZn−1,Y n(Zn−1 → Y n)}

− p- lim inf
n→∞

{ 1

n
iM,Y n,Zn−1(M,Zn−1|Y n)}

(d)
=p- lim inf

n→∞
{ 1

n
iXn,Y n(Xn → Y n)} − p- lim inf

n→∞
{ 1

n
iZn−1,Y n(Zn−1 → Y n)}

=I(Xn → Y n)− I(Zn−1 → Y n)

≤ sup
{p(xi|xi−1,yi−1)}∞i=1

I(Xn → Y n)− I(Zn−1 → Y n)

(e)
=CFB − I(Zn−1 → Y n)

where (a) follows from Lemma 76. Lines (b) and (c) follow from Lemma 71. Line (d) follows

from Lemma 77. Line (e) follows from the capacity characterization CFB in Tatikonda and

Mitter (2009) for channels with perfect feedback. Then for feedback-unfavorable channels2 (i.e.

CFB = C), we clearly have

R ≤ C − I(Zn−1 → Y n). (6.5)

Thus, for any capacity-achieving channel code, we must have RL = I(Zn−1 → Y n) = 0. The

proof is complete.

Remark 79 RL is nothing but the rate-loss by using noisy feedback. In fact, line (e) holds for

general channels and thus may induce generic implications. For example, RL should be less

2An an illustration Alajaji (1994), for discrete-time finite (q-ary) alphabet channels with modulo additive
noise Z, we have

CFB = C = log(q)− p- lim sup
n→∞

1

n
log

1

PZn(Zn)
.
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Figure 6.2 A concatenated coding scheme for channels with noisy feedback, where E3 repre-

sents the outer encoder and (E1,E2) represents the inner encoder.

than CFB − C for noisy feedback to be useful(in the sense of rate). However, we concentrate

on the feedback-unfavorable channels since the induced necessary condition has much stronger

implication.

Remark 80 Consider DMCs with noisy feedback and then apply the regular mutual and di-

rected information in the proof of Theorem 73. It is easy to refine the necessary condition to

be

RL = lim inf
n→∞

{ 1

n
I(Zn−1 → Y n)} = 0.

6.4 An Example: Noisy Feedback AWGN Channels

We now investigate a concatenated coding framework for noisy feedback AWGN channels

and show that such a concatenated coding scheme could not achieve the capacity. Consider

a concatenated coding scheme3 as shown in Fig.6.2, where the inner encoders E1 and E2 are

assumed to be linear time-invariant (LTI) systems and the noises W and V are white gaussian

noise with zero mean and variance σ2
w and σ2

v , respectively. Given a transmission power budget

P1 and P2 on channel inputs X and U , respectively, we know the capacity of this channel is

3This coding scheme is studied because it is one possibly implementable feedback coding scheme for AWGN
channels with noisy feedback and have been investigated in Chance and Love (2011b).
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C = 1
2 log(1 + P1

σw
).

According to Theorem 73, we now compute rate-loss RL for any possible channel codes as

follows. Firstly,

iZn−1,Y n(Zn−1 → Y n) = log

∏n
i=1 PYi|Zi−1,Y i−1(Yi|Zi−1, Y i−1)

PY n(Y n)

(a)
= log

∏n
i=1 PYi|V i−1,Y i−1(Yi|V i−1, Y i−1)

PY n(Y n)

=i(V n−1 → Y n)

(b)
=i(V n−1;Y n)

where (a) follows from the fact that V i−1 = Zi−1 − U i−1 and

U i−1 = gi−1(Y i−1) , [g1(Y 1), g2(Y 2), · · · , gi−1(Y i−1)].

Line (b) follows from the fact that directed information and mutual information coincide when

there exists no feedback from Y to V (Massey (1990)). Next, according to Remark 80, we have

RL = lim inf
n→∞

1

n
I(Zn−1 → Y n)

= lim inf
n→∞

1

n
I(V n−1;Y n)

= lim inf
n→∞

1

n
{I(V n−1;Sn) + I(V n−1;Y n|Sn)− I(V n−1;Sn|Y n)}

(a)
= lim inf

n→∞

1

n
{I(V n−1;Y n|Sn)− I(V n−1;Sn|Y n)}

(b)
= lim inf

n→∞
{ 1

n
I(V n−1;Y n|Sn)}

= lim inf
n→∞

1

n
{h(Y n|Sn)− h(Y n|Sn, V n−1)}

= lim inf
n→∞

1

n
{h((SWn)n + (SExzV n−1)n)− h(SWn)n)}

(S and Exz represent the sensitivity function and the transfer function from Z to X, respectively.)

(c)
=

1

2

∫ 1
2

− 1
2

log

(
|S(ej2πθ)|2(σ2

w + |Exz(ej2πθ)|2σ2
v)

|S(ej2πθ)|2σ2
w

)
dθ

=
1

2

∫ 1
2

− 1
2

log

(
1 + |Exz(ej2πθ)|2

σ2
v

σ2
w

)
dθ

where (a) follows from the fact that V is independent of S. Line (b) can be verified by Fano’s

inequality. Line (c) follows from the fact that V and W are assumed to be white gaussian and

then the Szegö-Kolmogorov-Krein theorem applies.
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If there exists a capacity-achieving channel code, we must have RL = 0 which implies

Exz(ej2πθ) = 0 at any frequency (i.e. feedback is not used in the sense of frequency domain).

Further the rate-loss RL is independent from encoders E2 and E3 and clearly RL = 0 if σ2
v = 0

(i.e. perfect feedback).

6.5 Conclusion

In this chapter, we consider a class of feedback-unfavorable channels with noisy feedback,

for which the capacity equals to the known non-feedback capacity. As the capacity is known at

this point, we turned out attention to find conditions on capacity-achieving channel codes. By

investigating the rate loss of using noisy feedback, we have derived a necessary condition on the

capacity-achieving channel codes. This condition delivers a negative message that using noisy

feedback could not induce any capacity-achieving channel code, or equivalently, is detrimental

to the maximal achievable rate.
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CHAPTER 7. NOISY FEEDBACK COMMUNICATIONS WITH SIDE

INFORMATION AT THE DECODER

7.1 Introduction

In this chapter, we consider noisy feedback channels with side information at the decoder

as shown in Fig.7.1 (Li and Elia (2012)). Different from the classical noisy feedback channels

considered in preceding chapters, it is assumed that the receiver has access to the information

received by the transmitter with finite delays. With this side information, the receiver causally

knows what the transmitter will do while the transmitter does not know the full information

received by the receiver. In other words, the feedback is noiseless on the receiver side while it

is noisy on the transmitter side. Investigating this new framework will bridge the gap between

the perfect feedback and the classical noisy feedback and is a key step forward to solve the

classical noisy feedback problem.

This framework is motivated by many practical applications of interacting networked sys-

tems. One practical example is force feedback for virtual reality applications as shown in Fig.

7.2. The controller/encoder sends force commands to a remote actuator that acts on an ob-

ject, say squeezing a rubber ball to fix the idea. The commands are delivered through a noisy

channel and translated into actuation on the object. Load cells directly measure the actual

force exerted on the object but with senor/measuring noise. The noisy signals from the load

cells are fed back to the transmitter over a noiseless channel to provide force feedback to the

operator/controller, which can then adjust the grasp strength. Note that, although the actual

communication channel in the feedback is noiseless, the effective feedback communication is

noisy due to the sensor noise. The load cell measurers can also be used locally at the re-

ceiver side to improve the fidelity of the reproduced forces. For this example, we are interested
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Figure 7.1 Noisy feedback communication channels with side information at the decoder: the

feedback information Zi is known by the decoder after T -step delay.

Figure 7.2 Grasper with noisy force feedback
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in a question, saying, what is the maximal transmission rate of this noisy actuation channel?

This new framework has many merits and only the most interesting two of them are investi-

gated in this chapter. Firstly, the capacity of noisy feedback channels under our new framework

can be characterized by the causal conditional directed information, which is automatically an

upper bound on the capacity of the classical noisy feedback channels. Secondly, for certain

channels, the new framework allows linear coding schemes with significant positive rate, which

can not be easily obtained for the classical noisy feedback framework1.

7.2 Modeling

As shown in Fig.7.1, we model the forward channel and the feedback channel at time instant

i as p(yi|xi, yi−1) and p(zi|ui, zi−1), respectively. The message index is m ∈ {1, 2, · · · , 2nR}

where R refers to the transmission rate. At time instant i, the transmitter E1 takes m and past

feedback information zi−1 to produce channel input xi(m, z
i−1) and the feedback transmitter

E2 takes all past channel outputs yi to produce feedback signal ui. Different from the classical

noisy feedback framework, the receiver(decoder) is allowed to have access to the feedback

output zi with finite delay T . After n time instants, the decoder recovers the message index

m̂(yn, zn−T ). The time ordering of these random variables are presented below.

M,X1, Y1, U1, Z1, · · · , Xn−1, Yn−1, Un−1, Zn−1, Xn, Yn, Un, Zn, M̂ . (7.1)

Next, for reader’s convenience, we recall the channel causality of communication channels

as shown in Fig. 7.1.

Definition 81 (Channel Causality) Consider random variables (M,Xn, Y n, Zn, M̂) in time

ordering (7.1). A communication channel p(Yi|Xi, Y i−1) is causal if

p(Yi|Xi, Y i−1, U i−1, Zi−1,M) = p(Yi|Xi, Y i−1).

Similarly, a feedback channel p(Zi|U i, Zi−1) is causal if

p(Zi|U i, Zi−1, Xi, Y i,M) = p(Zi|U i, Zi−1).

1In Kim et al. (2007), the author proved that for the noisy feedback gaussian channels, linear coding scheme
could not achieve any positive transmission rate.
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Following the literature, we assume the channel causality in this chapter as well.

7.3 Capacity Characterization

For channels without feedback, the capacity is well characterized by the mutual information.

For channels with perfect feedback, the capacity can be characterized by the directed informa-

tion. In what follows, we show that, for noisy feedback channels under the framework as shown

in Fig.7.1, the capacity can be characterized by the causal conditioning directed information.

The following theorems are of importance to be well understood.

Theorem 82 (Main Theorem) For noisy feedback channels with side information at the de-

coder, as shown in Fig.7.1,

I(M ; (Y n, Zn−T ))

=I(Xn → Y n||Zn−1)− I(M ;Zn−1
n−T+1|Y

n, Zn−T ).

(7.2)

Proof. Firstly, we have

i(M ; (Y n, Zn−1))

= log
p(Y n, Zn−1|M)

p(Y n, Zn−1)

=
n∑
i=1

log
p(Yi, Zi−1|Y i−1, Zi−2,M)

p(Yi, Zi−1|Y i−1, Zi−2)

=
n∑
i=1

log
p(Yi|Y i−1, Zi−1,M)p(Zi−1|Y i−1, Zi−2,M)

p(Yi|Y i−1, Zi−1)p(Zi−1|Y i−1, Zi−2)

=
n∑
i=1

log
p(Yi|Y i−1, Zi−1,M)p(Zi−1|U i−1, Y i−1, Zi−2,M)

p(Yi|Y i−1, Zi−1)p(Zi−1|U i−1, Y i−1, Zi−2)

(a)
=

n∑
i=1

log
p(Yi|Y i−1, Zi−1,M)

p(Yi|Y i−1, Zi−1)

=
n∑
i=1

log
p(Yi|Xi, Y i−1, Zi−1,M)

p(Yi|Y i−1, Zi−1)

(b)
=

n∑
i=1

log
p(Yi|Xi, Y i−1, Zi−1)

p(Yi|Y i−1, Zi−1)

=i(Xn → Y n||Zn−1)
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where (a) and (b) follow from the channel causality assumption. Then, by the chain rule of the

mutual information, we have

I(M ; (Y n, Zn−T ))

=I(M ; (Y n, Zn−1))− I(M ;Zn−1
n−T+1|Y

n, Zn−T )

=I(Xn → Y n||Zn−1)− I(M ;Zn−1
n−T+1|Y

n, Zn−T ).

The proof is complete.

Remark 83 We are looking at the mutual information between the message M and the in-

formation (Y n, Zn−T ) because (Y n, Zn−T ) are the actual information received by the decoder,

which can be used to recover the message.

Remark 84 Since the sequence Zn−1
n−T+1 in the second term has fixed length T , the quantity

I(M ;Zn−1
n−T+1|Y n, Zn−T ) should be uniformly bounded (and zero if T = 0, 1). If we average

both sides in (7.2) over n and take n→∞, the bounded quantity I(M ;Zn−1
n−T+1|Y n, Zn−T ) will

shrink to zero. Thus the causal conditional directed information I(Xn → Y n||Zn−1) is the only

relevant quantity to characterize the capacity. Without loss of generality, we only consider the

case T = 1 (i.e. I(M ;Zn−1
n−T+1|Y n, Zn−1) = 0) in the rest of this section.

Now we wish to realize the merit of Theorem 82. First of all, we give a high-level discussion

on the development of the capacity characterization for perfect feedback channels. Massey

(1990) introduced directed information and then it is found that

I(M ;Y n) = I(Xn → Y n). (7.3)

In light of this equality, it has been shown that the directed information can be used for

characterizing the perfect feedback capacity. Although different approaches have been adopted

for proving the capacity, the key idea behind all of them is to apply the approaches used in the

non-feedback case to the perfect feedback case, based on equation (7.3).

Specifically, there are three avenues for proving the nonfeedback capacity. The first one

is attributed to Shannon of using asymptotic equipartition property (AEP), joint typicality

decoding. Along this avenue, based on equation (7.3), Cover and Pombra (1989) characterized
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the capacity of Gaussian channel with perfect feedback and Kim (2010) presented the capacity

of a class of stationary perfect feedback channels. The second one is attributed to Gallager

of investigating random coding exponent which was later applied in characterizing the finite-

state channel capacity (Gallager (1968)). Along this avenue, based on equation (7.3), Permuter

et al. (2009) characterized the capacity of channels with time-invariant deterministic feedback.

The third one is attributed to Feinstein’s lemma which was applied in characterizing the gen-

eral channel capacity by Verdú and Han (1994). Then, based on equation (7.3), Tatikonda

Tatikonda and Mitter (2009) proved the general perfect feedback capacity accordingly. In a

word, equation (7.3) has played a key role in proving the perfect feedback capacity.

In what follows, we take into account the Gaussian noisy feedback channels with side in-

formation at the decoder2. See Fig.7.3. As it will be shown, based on Theorem 82, we can

explicitly characterize its n-block capacity along the first avenue. We believe that the capacity

for other classes of noisy feedback channels under our new framework can be also characterized

by the causal conditional directed information and the aforementioned three main avenues are

adoptable.

7.3.1 Capacity of Gaussian Noisy Feedback Channels with Side Information at

the Decoder

We provide the capacity characterization in the following theorem and present the proof in

Appendix, where Theorem 82 plays a key role in the proof.

Theorem 85 Consider Gaussian noisy feedback channels with side information at the decoder,

2If the power constraint P2 is removed and the encoder E2 is a time-invariant deterministic gain, this frame-
work essentially converges to the framework considered in Permuter et al. (2009).
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Figure 7.3 Additive Gaussian channel with additive Gaussian noise feedback:

Wn ∼ Nn(0,Kw,n) and V n ∼ Nn(0,Kv,n) where Kw,n and Kv,n are non-singular

covariance matrices. Average power constraints P1 and P2 are implemented on

inputs X and U , respectively.

as shown in Fig.7.3. The n-block capacity3 is

CFB,n = max
Bn,Dn,Ks,n

1

2n
log

det ((In + BnDn)Kw,n(In + BnDn)T + Ks,n)

det Kw,n

s.t. tr(Ks,n + BnKv,nB
T
n + BnDnKw,nD

T
nBT

n ) ≤ nP1,

tr(DnKs,nD
T
n + Dn(In + BnDn)Kw,n(In + BnDn)TDT

n + DnBnKv,nB
T
nDT

n ) ≤ nP2,

Ks,n ≥ 0, Bn is strictly lower triangular,

Dn is lower triangular.

(7.4)

Remark 86 An interpretation of matrices Bn and Dn as a specific coding scheme is shown in

Fig.E.1 in Appendix. Some notes on the above capacity characterization are presented below,

1. If Dn = 0n, the n-block capacity formula (7.4) converges to the non-feedback capacity

characterization in Cover and Pombra (1989).

3As stated in Cover and Pombra (1989), the n-block capacity CFB,n is defined as follows. For any ε > 0,

there exists a sequence of (n, 2n(CFB,n−ε)) channel codes with P
(n)
e → 0 as n → ∞. Conversely, for any ε > 0,

any sequence of (n, 2n(CFB,n+ε)) channel codes has P
(n)
e bounded away from zero for all n.
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2. If the power constraint P2 is removed and the channel outputs Y is fed back without any

encoding (i.e.Dn = In), the optimization problem (7.4) converges to the upper bound of

the classical noisy feedback Gaussian channels, characterized in Li and Elia (2011d).

3. According to the first power constraint P1, if the additive noise V n is large (in the sense of

covariance matrix), the matrix Bn will shrink to a zero matrix which implies the feedback

turns to be ”shut-off”.

7.3.2 Calculation of A Lower Bound: An Iteration Algorithm

In this section, we propose an iteration algorithm to compute CFB,n. Note, however, that

this algorithm only guarantees local optimality and the global optimality proof is left to our

future research. We first present a necessary corollary as follows, with the proof in Appendix.

Corollary 87 The optimization problem (85) can be casted into the following form,

maximize
Yn,Bn,Dn,Hn,Zn

1

2n
log

det Yn

det Kw,n

s.t.

Hn + Kw,nD
T
nBT

n + BnDnKw,n + Kw,n −Yn Bn

∗ K−1
v,n

 ≥ 0,

Zn −DnYnD
T
n DnBn

∗ K−1
v,n

 ≥ 0,

Yn In + BnDn

∗ K−1
w,n

 ≥ 0

tr(Hn) ≤ nP1, tr(Zn) ≤ nP2,

Bn is strictly lower triangular,

Dn is lower triangular.

(7.5)

As it is shown, the constraints in (7.5) are subject to coupling terms DnYnD
T
n , DnBn and

BnDn, which are not easy to decouple or substitute. The idea of the iteration algorithm is the
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following. With fixed feedback encoder Dn, the problem (7.5) turns to be convex and thus can

be solved efficiently by the semidefinite programming. So we wish to find a good Dn to obtain

a larger rate. We herein take the encoder Dn with the minimal power cost subject to the fixed

Yn and Bn. In other words, for a given transmission rate, we wish to design an encoder Dn

such that the total power cost is minimized. This task can be accomplished through solving

the following convex optimization problem.

minimize
Dn

τ1 + τ2

tr(Yn −Kw,nDnB
T
n −BnDnKw,n −Kw,n + BnKv,nBn) ≤ τ1,

tr(DnYnD
T
n + DnBnKv,nB

T
nDT

n ) ≤ τ2,Yn In + BnDn

∗ K−1
w,n

 ≥ 0,

Dn is lower triangular, τ1 ≤ nP1, τ2 ≤ nP2.

By introducing dummy matrix Gn and invoking Schur complement decomposition, we ob-

tain a convex form below.

minimize
Yn,Bn,Dn,Gn

τ1 + τ2

s.t.

Yn In + BnDn

∗ K−1
w,n

 ≥ 0,

Gn Dn

∗ (Yn + BnKv,nB
T
n )−1

 ≥ 0,

tr(Yn −Kw,nDnB
T
n −BnDnKw,n −Kw,n + BnKv,nBn) ≤ τ1,

tr(Gn) ≤ τ2, Dn is lower triangular,

τ1 ≤ nP1, τ2 ≤ nP2.

(7.6)

We are now ready to present the iteration algorithm.

Algorithm 88 (Iteration Algorithm)
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1. Initialization: Set n = 0 (the iteration number), the maximum number of iterations nmax,

the desired accuracy δ > 0, and the initial feedback encoder Dn.

repeat

2. n← n+ 1;

3. For fixed current Dn, solve the optimization problem (7.5) and obtain the cost value tn,

matrix Yn and Bn.

4. For fixed current Yn and Bn, solve the optimization problem (7.6) and obtain Dn.

until n ≥ nmax, or tn − tn−1 ≤ δ.

Theorem 89 If the optimization problem (7.5) is feasible for the initial feedback encoder Dn,

the convergence of the sequence of objective value t’s generated by the algorithm is guaranteed.

Proof. Let Dn be a feasible encoder for the problem (7.5) and let objective value tk

(achievable rate at iteration k), Yn and Bn be the solution obtained by solving problem (7.5)

for the fixed Dn. Then for the fixed matrix Yn (i.e. fixed achievable rate) and Bn, solve the

problem (7.6) will yield a less total power cost (i.e. τ1 + τ2 ≤ nP1 + nP2) since at least the

encoder Dn is a feasible solution. Then fix Dn again, solve the problem (7.5) will obviously

provide a bigger tk+1 (i.e. higher achievable rate). Therefore, the proposed iterative procedure

yields a non-decreasing sequence of objective value t’s which is clearly bounded above. The

proof is complete.

We end this section by showing some numerical examples.

Fig.7.4 shows the achievable rate calculated by the iteration algorithm, compared with the

perfect feedback capacity and the non-feedback capacity. These plots indicate that our new

framework can achieve much larger transmission rate (in small feedback noise region) than the

non-feedback capacity.

To verify the benefits of using the encoder E2, we now compare the achievable rates obtained

by using E2 and unit-gain (i.e.E2 = In) feedback, respectively. Consider the same channel

model described in Fig.7.4 with P1 = 10 and σ2 = 0.1. For unit-gain feedback, the feedback
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transmission power P2 = 12.17 and the achievable rate R = 1.7562. However, by applying E2

under the same power constraint P2, the achievable rate is R = 1.7577. Note that this rate

enhancement may be much more significant for other settings.
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Figure 7.4 The n-block achievable rate of a Gaussian noisy feedback channel with side infor-

mation at the decoder: The forward channel is assumed to be a first-order moving

average (1st-MV) Gaussian process, Namely, Wi = Ũi + 0.2Ũi−1 where Ũi is a

white Gaussian process with zero mean and unit variance; The feedback channel

is assumed to be an additive white Gaussian noise with variance σ2; The power

constraint is P1 = P2 = 10 and the coding block length n = 30.

7.4 Simple Coding Strategy

As it is shown in Kim et al. (2007), any linear coding scheme fails to achieve positive

transmission rate for the classical Gaussian noisy feedback channels. In contrast, in this section,

we aim to show that for certain noisy feedback channels, the new framework allows us to design

linear coding scheme to communicate with significant positive transmission rate4. In what

follows, we investigate a first-order moving average Gaussian channel with random intermittent

4A linear coding strategy for AWGN channels with bounded noise feedback which actually fits in our new
framework can be found in Martins and Weissman (2008).
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feedback (Fig.7.5). Specifically,

Wi = Ũi + αŨi−1

where Ũi (i = 0, 1, 2, · · · , n) is an independent identical distributed normal distribution with

zero mean and unit variance. The power constraints on channel inputs {Xi}∞i=0 and feedback

inputs {Ui}∞i=0 are assumed to be P1 and P2, respectively. The feedback information is indepen-

dently either erased (i.e. ξi = 0) with probability e or perfectly received by the transmitter (i.e.

ξi = 1) with probability 1−e. Now, we present a specific linear coding scheme whose achievable

rate is not only positive but also, for some cases, larger than the non-feedback capacity.

Consider a simple coding strategy, denoted by symbol C, as follows. Let r be the real root

with the maximal absolute value of the third-order polynomial

(1 + α2)x3 + 2αx2 − (1 + α2 + P1)x− 2α = 0 (7.7)

We first set the encoder E2 to be a positive gain

g ≤
√

P2

P1 + 1 + α2
.

Note that, without reducing the achievable rate of our proposed transmission scheme, the gain

g can be time-varying if it is practically necessary. Now, we have Ui = gYi. Next, for encoder

E1, define

A(ξi = 0) = 1, B(ξi = 0) = 0

A(ξi = 1) = −r, B(ξi = 1) = r − 1

r

At time 0, the channel input is X0 (the message to transmit) and the decoder receives Y0.

At time 1, the channel input is

X1 = A(ξ0)X0 +
1

g
B(ξ0)Z0.

Note that the one-step delay is captured here and ξi is available to the transmitter through

detecting Zi−1 = {Ui−1, ∅}. At time n, the channel input is

Xn = A(ξn−1)Xn−1 +
1

g
B(ξn−1)Zn−1.
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Figure 7.5 1st-MV Gaussian channel with intermittent feedback.

Now, we construct the decoder as follows. For the first T times, the decoder receives Y T
1

and the state of the decoder are set to be zero (i.e. X̃0 = X̃1 = · · · = X̃T−1 = 0). At time n

(n > T ), the decoder receives (Y n
0 , ξ

n−T
0 ) and

X̃n =A(ξn−T )X̃n−1 +B(ξn−T )Yn−T ,

X̂0,n =

( n−T∏
j=0

a(ξj)

)−1

X̃n.

Now, we present a theorem below and give the proof in Appendix.

Theorem 90 Consider a first-order moving average Gaussian channel with random inter-

mittent feedback where the intermittent acknowledgement is available to the decoder with fi-

nite delay (Fig.7.5). Then the coding strategy C has a transmission rate arbitrarily close to

R = (1− e) log(|r|) with error probability decaying at least exponentially.

Remark 91 As it is shown in the Theorem, the finite delay T does not affect the transmission

rate. However, it will be shown in the proof that the delay actually affects the probability of

decoding error.

Corollary 92 Assume the erasure probability e = 0 (i.e. perfect feedback). Then for any ε > 0,

there exists a α∗ > 0 such that, for any 1-MV Gaussian channels with memory |α| ≤ α∗, the
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coding strategy C has a transmission rate R > Cfb − ε where Cfb denotes the perfect feedback

capacity.

Remark 93 The corollary implies that our linear coding scheme converges to the capacity-

achieving coding scheme for the 1st−MV Gaussian channel with small α. This will be verified

later by a simulation result.

Now we show the proof of Theorem 90.

Proof. (sketch) Recall the perfect feedback capacity for the 1st-MV Gaussian channel in

Kim (2010) is log(r) where r is the unique positive root of the fourth-order polynomial

P1x
2 = (x2 − 1)(x2 + 2λαx+ α2), (7.8)

where

λ =
{ 1 α ≤ 0

−1 α > 0
.

After some algebra, we have the polynomial (7.7) be equivalent to

P1x
2 = (x2 − 1)(x2 + α2x2 + 2αx). (7.9)

Clearly, the polynomial (7.9) converges to (7.8) as α goes to zero. Thus, their corresponding

roots are close as well. The proof is complete.

Corollary 94 If the erasure probability e = 0 (i.e. perfect feedback) and α = 0 (i.e. the

additive Gaussian noise is white), the rate R achieves the capacity C = 1
2 log(1 + P ) and the

coding scheme C converges to the well-known Schalkwijk-Kailath scheme.

Proof. (sketch) For α = 0, the polynomial (7.7) becomes

x3 − (1 + P )x = 0

and thus r =
√

1 + P . That is, the achievable rate of our proposed coding scheme R =

1
2 log(1 +P ) which is the capacity of the channel. It is straightforward to demonstrate that for

α = 0 the coding scheme C turns to be the Schalkwijk-Kailath scheme.
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Figure 7.6 Achievable rates of coding scheme C under power constraints P1 = P2 = 0.5.

We end this section by presenting a simulation result. See Fig.7.6. It is shown that the

achievable rate of the proposed linear coding scheme is almost equal to the perfect feedback

capacity when the erasure probability e = 0 and α ∈ [0, 0.15]. This verifies Corollary 92. As e

increases, the achievable rate decreases proportionally. For e < 0.2, there exists a range of α

such that the achievable rate is larger than the non-feedback capacity. For e > 0.2, although

the transmission rate is still positive, the rate enhancement (with respect to the non-feedback

capacity) disappears.

7.5 Conclusion

In this chapter, we have introduced and investigated a new framework of noisy feedback

communication channels with side information at the decoder. Firstly, we have shown that its

capacity can be characterized by the causal conditioning directed information. As an example,

the n-block capacity of Gaussian noisy feedback channels under this framework has been char-
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acterized and an iteration algorithm has been proposed to obtain a lower bound. Secondly, we

have considered a class of noisy feedback channels — 1st-MV Gaussian channels with intermit-

tent feedback. We have proposed a linear coding strategy which, for certain cases, provides a

transmission rate larger than the non-feedback capacity. This implies that the our new frame-

work allows simple linear coding strategies with significant positive transmission rate.

The new framework opens many promising avenues for future research. We briefly list a

few of them as follows.

1. The capacity of noisy feedback channels with side information at the decoder is clearly

an non-trivial upper bound on the capacity of classical noisy feedback channels. Thus,

besides the Gaussian channel investigated in this chapter, we may be able to characterize

the capacity for different classes of noisy feedback channels under our new framework in

order to obtain tight upper bounds on the capacity of classical noisy feedback channels.

For example, finite state channel is a good candidate to work with.

2. It is of importance to find calculation approaches for the causal conditioning directed

information. We speculate that the calculation should be amenable to the approaches

developed for the calculation of the directed information, e.g. dynamic programming

(Tatikonda and Mitter (2009)). This, however, remains to be seen.

3. The new framework could be extended to the multi-terminal case and a fruitful results

could be obtained. For example, by considering our new framework, it is hopeful to find

an outer bound for multiple access channels with noisy feedback.
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CHAPTER 8. CONCLUSION AND FUTURE RESEARCH

DIRECTIONS

8.1 Conclusion

Motivated by the emerging networked system with interconnecting communications, a com-

prehensive mathematical theory of communication channels with noisy feedback is much more

stringent than any time before. However, a careful review on the literature finds out that very

few results have been derived on this subject, due to the intractable coordination loss between

the transmitter and the receiver.

This thesis serves as a step forward to complete this mathematical theory. First of all,

we have analyzed the information flow in communication channels with noisy feedback. An

information flow decomposition equality has been derived and served as a basis for the rest

of the results in this thesis. In addition, we have proposed a new concept, residual directed

information, which is equal to the mutual information between the message and the channel

outputs. This new concept indicates that the well-known mutual information and the directed

information are not suitable for characterizing the message-delivery information flow in chan-

nels with access to noisy feedback. With the the information flow equality and the new concept

in hand, we have developed multiple novel results on noisy feedback systems:

1. We provided a channel coding theorem, characterized by the residual directed information,

for finite-alphabet communication channels with noisy feedback. Then we derived upper

and lower bounds on the capacity, which are characterized by the causal conditioning

directed information.

2. We derived upper and lower bounds on the n-block capacity of Gaussian channels with

additive Gaussian noise feedback. These bounds can be numerically obtained by solving
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well-defined convex optimization problems. Under the assumption of stationarity on

Gaussian noises, we proved that the limits of these bounds exist and can be characterized

in the form of power spectral optimizations.

3. We provided a necessary condition on the capacity-achieving channel codes for feedback-

unfavorable channels (i.e. a class of channels whose capacity can not be increase by using

feedback). Based on this condition, we concluded that any capacity-achieving channel

code for feedback-unfavorable channels could not use feedback information.

4. Finally, we investigated an extended noisy feedback setting - noisy feedback communi-

cations with side information at the decoder, where the feedback information received

by the transmitter is also available to the decoder with some finite delays. We proved

that the capacity of this class of channels can be characterized by the causal conditional

directed information; for additive Gaussian noises, the new framework allows linear feed-

back coding schemes with positive transmission rate, which is (in certain regime) much

larger than the non-feedback Gaussian channel capacity.

In summary, we have proved that the information flow decomposition equality is a founda-

tion and powerful tool to deal with noisy feedback problems. We anticipate that this equality

will serve as a basis for more valuable results and be helpful in establishing the comprehensive

theory of communications with noisy feedback.

8.2 Future Directions

We list several avenues for future research, which are suggested by the main results in this

thesis.

8.2.1 Noisy feedback capacity and computable bounds

As it is shown, the capacity characterization in Theorem 31 is not computable in general due

to the probabilistic limit and code-functions. We simplified this characterization under certain

reasonable conditions (e.g. strong converse property). However, is it possible to obtain a single-

letter characterization for some particular channels with noisy feedback?
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From industrial point of view, some easy-computable bounds on the noisy feedback capacity

are vital reference for communication product analysis and design. Therefore, besides the

Gaussian channel considered in this thesis, we wish to find out computable bounds on the

capacity for other important/common channels.

8.2.2 To use or not to use feedback

Theorem 73 implies that there does not exist a capacity-achieving feedback coding scheme for

DMC with noisy feedback. In other words, exploiting the information from the noisy feedback

link is actually detrimental to achieving the maximal achievable rate. This negative result

induces a natural question: to use or not to use feedback. To answer this question, there are

three research directions that become relevant in this context, and that propose to investigate.

1. Theorem 73 shows that using noisy feedback inevitably causes rate-loss. However, as

proved in the literature, using noisy feedback is still beneficial to improve decoding er-

ror exponent (Draper and Sahai (2006a,b, 2008)), simplify coding structure (Agrawal

and Love (2011)), etc. Therefore, we need a tradeoff while using noisy feedback. How

to characterize the tradeoff, however, is an important issue. In particular, what is the

mathematical relationship between the rate-loss and the improved error exponent/coding

complexity? We believe that this tradeoff characterization will perform as a basic refer-

ence for communication engineer to do physical layer design.

2. Finally, as we move away from pure communication problems and consider problems

like remote feedback stabilization, we have no choice but to use feedback (from noisy

DMC channels). In these situations, the loss of communication efficiency needs to be

contrasted and compared with the benefits of using feedback. It is necessary to derive

this formal analysis. The starting point will be the equivalence between stabilization and

communication with noiseless feedback for Gaussian channels (Elia (2004)). When the

feedback is noisy, this equivalence seems to partially break down. While there are still

enough bits reliably flowing back to the transmitter to guarantee stabilization, it is no

longer immediate to identify a suitable decoder at the receiver side. The information
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pattern in this case is different and maybe the existence of such decoder is questionable.

8.2.3 Explicit linear feedback coding schemes

One of the long-term objective is to find out explicit capacity-achieving coding schemes for noisy

feedback communication systems. Motivated by the CP-scheme, we will begin with designing

the best linear feedback coding scheme. Note, however, that for noisy feedback communication

Kim et al. (2007) has proved that any coding scheme linearly using both the message index and

the feedback information can not achieve any positive transmission rate. Therefore, the “linear

coding” herein refers to the linear processing of the feedback information only. Although it

may not achieve the capacity, the linear scheme will play an important role in academic field

and certainly have widely industrial applications.

The first effort will be devoted into additive colored Gaussian channels with additive Gaus-

sian noise feedback. One possible approach we will investigate is to extend the Cover-Pombra

(CP) scheme which is a capacity-achieving scheme for noiseless feedback Gaussian channels.

As it is known, CP scheme allows Gaussian signalling of the message information and linear

processing of the feedback information1. Furthermore, CP scheme implicitly incorporates the

Kalman filtering algorithm and therefore is a “hub” connecting communications and estima-

tion. To extend the CP scheme or its code construction idea, we need answer several necessary

questions summarized below.

1. Is it possible to construct a CP-like feedback coding scheme for noisy feedback Gaussian

channels?

2. What is the rate-loss (the gap between the capacity and the achievable rate of CP-like

scheme) and the decaying rate of the probability of decoding error?

3. As did in the noiseless feedback case, does the constructed CP-like scheme lead to a

convergence of communications and estimation?

If possible, it is worthy to investigate the best linear coding scheme for other important channels

and in the meanwhile try to find the capacity-achieving feedback coding scheme.

1This configuration can be alternatively viewed as a concatenated coding scheme.
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8.2.4 Multi-terminal communications with noisy feedback

We anticipate that the information flow decomposition equality is extendable to multi-terminal

settings and helpful to find outer/inner bounds on the capacity region of multi-access channel

(MAC), broadcast channel (BC), relay channel (RC) under the situation of noisy feedback.

This work will serve as a basis for further investigation of general network capacity with node-

to-node noisy feedback communication. So far, quite few researchers have been working on this

problem due to the lack of theoretic results for point-to-point noisy feedback communication

systems. See Gastpar and Kramer (2006); Lapidoth and Wigger (2010) and reference therein.

1. One conventional approach to obtain achievable region (inner bound) is to design specific

coding schemes. The effective (linear) coding structures obtained under the point-to-point

noisy feedback communication will be strong candidates to investigate. In particular, the

CP-like coding structure or the concatenated coding structure may be applicable to the

multi-terminal case. Moreover, some conventional coding techniques will be tested, such

as superposition coding, simultaneous non-unique decoding, etc.

2. The outer bound is mostly obtained by invoking Fano’s inequality, dependence-balance

argument, etc. Besides, extend the computable upper bound derived for the point-to-

point noisy feedback communication to the multi-terminal case will be a valuable attempt.

8.2.5 Confluence of feedback control and feedback communication

One important research avenue is to further develop an integrated view and theory of

feedback control and feedback communication. For noiseless feedback and Gaussian channels,

previous work Elia (2004); Liu and Elia (2006) has shown the equivalence between commu-

nication with feedback and stabilization with feedback, and the convergence of fundamental

limitations of communication control and estimation for feedback systems. In particular, it has

shown that a noiseless feedback system must satisfy the Bode Integral formula, a fundamen-

tal limitation of feedback systems. at the same time, the Bode integral must be equal to the

communication rate in the channel, which is expressed by the directed information. Finally,

both quantities are equal to the rate of the decay of the Krame-Rao bound of an equivalent
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estimation problem, showing the necessity of a Kalman filter in the decoder. The relations are

summarized as follows:

Rate = I(W ; Ŵ ) = I(U → Y ) =

∫ 1
2

− 1
2

log |S(ej2πθ|dθ = − lim
T→∞

CRBW,T
2(T + 1)

=
∑
i

log λui (A)

where S(ej2πθ) is the Sensitivity transfer function from N to y, CRBW,t ≤ E{(W − Ŵt)(W −

Ŵt)
′} is the Cramer-Rao bound, and λui (A) are the unstable eigenvalues of A.

This unified theory allows us to use results, controller design tools and methodologies to deal

with feedback communication problems (e.g. coding design, system analysis, etc) and vice versa.

For the noiseless feedback case, much work has been done and many notable results have been

obtained. In particular, we can use information theoretic quantities, i.e. directed information

to characterize limitation of feedback systems over communication channels. This idea has been

further explored in Martins and Dahleh (2008), where certain feedback performance measure

of disturbance rejection was expressed in terms of the directed information. Unfortunately,

the above results heavily depend on noiseless feedback. For the noisy feedback case, however,

only few results (Yuksel and Bassar (2011)) have been known and much work remains to be

done. Now that we have an appropriate information theoretic quantity characterizing the

noisy feedback rate and capacity, it is then necessary to re-investigate the equivalence and

connections with control and estimation settings. we remark that the intuition to the insight

that lead to the introduction of the residual directed information was obtained from the control

and communication analysis of a typical feedback control system with disturbance and sensor

noise (Elia (2005)). This encourages us to solve the noisy feedback communication problem

from feedback control perspective. As an illustration, it is known that the most general linear

controller has two degree of freedom, one is in the feedback and the other is feed-forward.

We plan to explore the two-degree controller synthesis methodology to the coding design for

communications systems. However, it is reasonable to believe that the two-degree coding design

would in general lead to a non-convex problem. At this point, the duality theory may provide

a solvable result or at least a sub-optimal solution.
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APPENDIX A. PROOFS OF RESULTS IN CHAPTER 3

Proof of Proposition 20

1) By Corollary 19, we have

E[iR(Xn(M)→ Y n)] = IR(Xn(M)→ Y n)

≤ I(Xn;Y n)

= H(Y n)−H(Y n|Xn)

≤ H(Y n)

≤ log |Yn|

2)

iR(Xn(M)→ Y n) = i(Xn → Y n)− i(Xn → Y n|M)

= log
−→p (Y n|Xn)

p(Y n)
− log

−→p (Y n|Xn,M)

p(Y n|M)

= log
−→p (Y n|Xn)

p(Y n)
− log

−→p (Y n|Xn)

p(Y n|M)
(a)

= log
p(Y n|M)

p(Y n)



www.manaraa.com

110

where line (a) follows the fact that M→ Xn → Y n forms a Markov chain. Then,

V ar[iR(Xn(M)→ Y n)]

=E[(iR(Xn(M)→ Y n))2]− E2[iR(Xn(M)→ Y n)]

≤E[(iR(Xn(M)→ Y n))2]

=E[(log
p(Y n|M)

p(Y n)
)2]

=
∑

m∈M,yn∈Yn
p(m, yn)(log

p(yn|m)

p(yn)
)2

=
∑

m∈M,yn∈Yn,p(m,yn)≥p(yn)

p(m, yn)(log
p(yn|m)

p(yn)
)2

+
∑

m∈M,yn∈Yn,p(m,yn)≤p(yn)

p(m, yn)(log
p(yn|m)

p(yn)
)2

=
∑

m∈M,yn∈Yn,p(m,yn)≥p(yn)

p(m, yn)(log
p(yn)

p(yn|m)
)2

+
∑

m∈M,yn∈Yn,p(m,yn)≤p(yn)

p(m, yn)(log
p(yn|m)

p(yn)
)2

≤
∑

m∈M,yn∈Yn,p(m,yn)≥p(yn)

p(m, yn)(log
1

p(yn|m)
)2

+
∑

m∈M,yn∈Yn,p(m,yn)≤p(yn)

p(m, yn)(log
1

p(yn)
)2

≤
∑

m∈M,yn∈Yn
p(m, yn)(log

1

p(yn|m)
)2 +

∑
m∈M,yn∈Yn

p(m, yn)(log
1

p(yn)
)2

=
∑
m∈M

p(m)
∑
yn∈Y\

p(yn|m)(log
1

p(yn|m)
)2 +

∑
yn∈Yn

p(yn)(log
1

p(yn)
)2

≤
∑
m∈M

p(m)
∑
yn∈Yn

1 +
∑
yn∈Yn

1 (b)

=2|Yn|

(b) follows the fact that function f(x) = x(log( 1
x))2 ≤ 1 for 0 ≤ x ≤ 1. This is easy to check

by taking derivative on x.
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Proof of Corollary 22

We herein adopt a derivation methodology similar to the one used in Theorem 17.

I(M ;Y n)

=H(Y n)−H(Y n|M)

=

n∑
i=1

H(Yi|Y i−1)−
n∑
i=1

H(Yi|Y i−1,M)

=

n∑
i=1

H(Yi|Y i−1)−
n∑
i=1

H(Yi|Y i−1,M, V i−1)− (

n∑
i=1

H(Yi|Y i−1,M)−
n∑
i=1

H(Yi|Y i−1,M, V i−1))

(a)
=

n∑
i=1

H(Yi|Y i−1)−
n∑
i=1

H(Yi|Y i−1,M,Zi−1)− (

n∑
i=1

H(Yi|Y i−1,M)−
n∑
i=1

H(Yi|Y i−1,M, V i−1))

=

n∑
i=1

H(Yi|Y i−1)−
n∑
i=1

H(Yi|Y i−1, Xi)− (

n∑
i=1

H(Yi|Y i−1,M)−
n∑
i=1

H(Yi|Y i−1,M, V i−1))

=

n∑
i=1

I(Xi;Yi|Y i−1)−
n∑
i=1

I(V i−1;Yi|Y i−1,M)

=I(Xn → Y n)− I(V n−1 → Y n|M)

where line (a) follows from the fact that Zi−1 = Y i−1 + V i−1. Next,

I(V n−1 → Y n|M)
(b)
=I(V n−1;Y n|M)

=H(V n−1|W )−H(V n−1|Y n,M)

(c)
=H(V n−1)−H(V n−1|Y n) +H(V n−1|Y n)−H(V n−1|Y n,M)

=I(V n−1;Y n) + I(M ;V n−1|Y n)

where line (b) follows from the fact that there exists no feedback from Y n to V n−1 and line (c)

follows from the fact that the noise V n−1 is independent from M . Putting previous equations

together, the proof is complete.
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APPENDIX B. PROOFS OF RESULTS IN CHAPTER 4

Proof of Lemma 30

Before giving the proof, we need the following Lemma.

Lemma 95 For channels with noisy feedback, as shown in Fig.4.1,

p(xn, yn) =
∑

zn∈Zn

n∏
i=1

p(zi|yi, zi−1)︸ ︷︷ ︸
Feedback link

p(xi|xi−1, zi−1)︸ ︷︷ ︸
Encoding

p(yi|xi, yi−1)︸ ︷︷ ︸
Channel

Proof.

p(xn, yn) =
∑

zn∈Zn
p(xn, yn, zn)

=
∑

zn∈Zn
p(zn|xn, yn, zn−1)p(xn, yn, zn−1)

=
∑

zn∈Zn
p(zn|xn, yn, zn−1)p(yn|xn, yn−1, zn−1)p(xn, yn−1, zn−1)

=
∑

zn∈Zn
p(zn|xn, yn, zn−1)p(yn|xn, yn−1, zn−1)p(xn|xn−1, yn−1, zn−1)

p(xn−1, yn−1, zn−1)

(a)
=

∑
zn∈Zn

p(zn|yn, zn−1)p(yn|xn, yn−1)p(xn|xn−1, zn−1)

p(xn−1, yn−1, zn−1)

=
∑

zn∈Zn

n∏
i=1

p(zi|yi, zi−1)p(xi|xi−1, zi−1)p(yi|xi, yi−1)

where (a) follows from the Markov chains: xn − (yn, zn−1) − zn, zn−1 − (xn, yn−1) − yn and

yn−1 − (xn−1, zn−1)− xn.
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Now, we are ready to give the proof of Lemma 30. Proof.

p(xn, yn, fn)

= p(xn, yn|fn)p(fn)

(a)
= p(fn)

∑
zn∈Zn

n∏
i=1

p(zi|yi, zi−1, fn)p(xi|xi−1, zi−1, fn)p(yi|xi, yi−1, fn)

= p(fn)
∑

zn∈{Zn:xn=fn(zn−1)}

n∏
i=1

p(zi|yi, zi−1, fn)p(yi|f i(zi−1), yi−1, fn)

(b)
= p(fn)

∑
zn∈{Zn:xn=fn(zn−1)}

n∏
i=1

p(zi|yi, zi−1)p(yi|f i(zi−1), yi−1)

(c)
=

n∏
i=1

∏
zi−1

p(fi(z
i−1)|f i−1(zi−2), zi−1)

∑
zn∈{Zn:xn=fn(zn−1)}

n∏
i=1

p(zi|yi, zi−1)p(yi|f i(zi−1), yi−1)

where (a) follows from Lemma 95. Line (b) follows from the Markov chains: fn− (yi, zi−1)−zi

and fn − (f i(zi−1), yi−1)− yi. Line (c) follows from Lemma 29.
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Proof of Lemma 35

IR(Xn(Fn)→ Y n)

(a)
=I(Fn;Y n)

=I(Fn; (Y n, Zn−1)− I(Fn;Zn−1|Y n)

(b)
=I(Fn → (Y n, Zn−1))− I(Fn;Zn−1|Y n)

=

n∑
i=1

I(F i, (Yi, Zi)|Y i−1, Zi−1)− I(Fn;Zn−1|Y n)

=

n∑
i=1

H(Yi, Zi|Y i−1, Zi−1)−H(Yi, Zi|Y i−1, Zi−1, F i)− I(Fn;Zn−1|Y n)

=
n∑
i=1

H(Zi|Y i, Zi−1) +H(Yi|Y i−1, Zi−1)−H(Zi|Y i, Zi−1, F i)−H(Yi|Y i−1, Zi−1, F i)

− I(Fn;Zn−1|Y n)

(c)
=

n∑
i=1

H(Yi|Y i−1, Zi−1)−H(Yi|Y i−1, Zi−1, F i)− I(Fn;Zn−1|Y n)

(d)
=

n∑
i=1

H(Yi|Y i−1, Zi−1)−H(Yi|Y i−1, Xi, Zi−1, F i)− I(Fn;Zn−1|Y n)

(e)
=

n∑
i=1

H(Yi|Y i−1, Zi−1)−H(Yi|Y i−1, Xi, Zi−1)− I(Fn;Zn−1|Y n)

=
n∑
i=1

I(Xi, Yi|Y i−1, Zi−1)− I(Fn;Zn−1|Y n)

=I(Xn → Y n||Zn−1)− I(Fn;Zn−1|Y n)

where (a) follows from Lemma 28. Line (b) follows from the fact that there exists no feedback

from (Y n, Zn) to Fn and thus the mutual information and directed information coincide. Line

(c) follows from the fact that H(Zi|Y i, Zi−1) = H(Zi|Y i, Zi−1, F i) since F i − (Y i, Zi−1) − Zi

forms a Markov chain. Line (d) follows from the fact that Xi can be determined by F i

and the outputs of the feedback link Zi−1. Line (e) follows from the Markov chain F i −

(Y i−1, Xi, Zi−1)− Yi.
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Proof of Lemma 40

|I(Xn → Y n|Zn−1)− I(Xn → Y n||Zn−1|S)|

=|
n∑
i=1

I(Xi;Yi|Zi−1)−
n∑
i=1

I(Xi;Yi|Zi−1, S)|

=|
n∑
i=1

H(Yi|Y i−1, Zi−1)−H(Yi|Xi, Y i−1, Zi−1)

−H(Yi|Y i−1, Zi−1, S)−H(Yi|Xi, Y i−1, Zi−1, S)|

=|
n∑
i=1

I(S;Yi|Y i−1, Zi−1)−
n∑
i=1

I(S;Yi|Xi, Y i−1, Zi−1)|

≤max{
n∑
i=1

I(S;Yi|Y i−1, Zi−1),
n∑
i=1

I(S;Yi|Xi, Y i−1, Zi−1)}

≤max{
n∑
i=1

I(S;Yi, Zi|Y i−1, Zi−1),
n∑
i=1

I(S;Yi, Xi+1, Zi|Xi, Y i−1, Zi−1)}

= max{I(S;Y n, Zn), I(S;Y n, Xn+1
2 , Zn)}

≤max{H(S), H(S)}

≤log|S|

Proof of Lemma 41

p(xN , yN , zN−1, sn)

=
∑

sn+1,··· ,sN

p(xN , yN , zN−1, sN )

=
∑

sn+1,··· ,sN

N∏
j=n+1

p(xj , yj , zj−1, sj |xj−1, yj−1, zj−2, sj−1) · p(xn, yn, zn−1, sn)

=
∑

sn+1,··· ,sN

N∏
j=n+1

p(xj |xj−1, yj−1, zj−1, sj−1) · p(yj , sj |xj , yj−1, zj−1, sj−1)

· p(zj−1|xj−1, yj−1, zj−2, sj−1) · p(xn, yn, zn−1, sn)

=
∑

sn+1,··· ,sN

N∏
j=n+1

p(xj |xj−1, zj−1) · p(yj , sj |xj , sj−1) · p(zj−1|yj−1, zj−2) · p(xn, yn, zn−1, sn)
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where the last line follows from the channel causality models. Similarly,

p(xN , yN−1, zN−1, sn)

=
∑

sn+1,··· ,sN

∑
yN

p(xN , yN , zN−1, sN )

=
∑

sn+1,··· ,sN

∑
yN

N∏
j=n+1

p(xj |xj−1, zj−1) · p(yj , sj |xj , sj−1)

· p(zj−1|yj−1, zj−2) · p(xn, yn, zn−1, sn)

=
∑

sn+1,··· ,sN

N∏
j=n+1

p(xj |xj−1, zj−1) · p(zj−1|yj−1, zj−2)

N−1∏
j=n+1

·p(yj , sj |xj , sj−1) · p(sN |xN , sN−1) · p(xn, yn, zn−1, sn)

Next,

p(yN |xN , yN−1, zN−1, sn) =
p(xN , yN , zN−1, sn)

p(xN , yN−1, zN−1, sn)

=

∑
sn+1,··· ,sN

∏N
j=n+1 p(yj , sj |xj , sj−1)∑

sn+1,··· ,sN
∏N−1
j=n+1 ·p(yj , sj |xj , sj−1) · p(sN |xN , sN−1)

It is observed that (xn, yn, sn−1, zn−1) does not appear in the last line, we conclude that

p(yN |xN , yN−1, zN−1, sn) = p(yN |xNn+1, y
N−1
n+1 , z

N−1
n , sn)
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APPENDIX C. PROOFS OF RESULTS IN CHAPTER 5

Proof of Lemma 51

i).proof of equality (1)

Since there is no feedback from channel outputs Y n to the feedback additive noise V n−1,

the directed information from V n−1 to Y n equals the mutual information. Thus, we have

I(V n−1;Y n) =I(V n−1 → Y n)

=
n∑
i=1

I(V i−1;Yi|Y i−1)

=
n∑
i=1

h(Yi|Y i−1)− h(Yi|Y i−1, V i−1)

=h(Y n)− h(Y n||V n−1)

In addition,

I(V n−1;Y n) = h(Y n)− h(Y n|V n−1).

Thus, we have h(Y n|V n−1) = h(Y n||V n−1).

ii).proof of equality (2)

Recall the chain rule of conditional mutual information as follows,

I(a, b; c|d) = I(b; c|d) + I(a; c|b, d), (C.1)
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where (a, b, c, d) refers to random variables or vectors. First of all, we have

I(Xn → Y n||V n−1)

=
n∑
i=1

I(Xi;Yi|Y i−1, V i−1)

=
n∑
i=1

I(M,Xi;Yi|Y i−1, V i−1)− I(M ;Yi|Xi, Y i−1, V i−1)

(a)
=

n∑
i=1

I(M,Xi;Yi|Y i−1, V i−1)

(b)
=

n∑
i=1

I(M ;Yi|Y i−1, V i−1)

(c)
=

n∑
i=1

I(M,V n−1
i ;Yi|Y i−1, V i−1)− I(V n−1

i ;Yi|M,Y i−1, V i−1)

where line (a) follows from the channel causality, i.e., p(yi|xi, yi−1, vi−1,m) = p(yi|xi, yi−1),

and thus I(M ;Yi|Xi, Y i−1, V i−1) = 0, line (b) follows from the fact that Xi is a deterministic

function of (M,Y i−1 + V i−1) and line (c) follows from the chain rule (C.1).

Now we show I(V n−1
i ;Yi|M,Y i−1, V i−1) = 0. By using chain rule (C.1), we have

I(V n−1
i ;Yi|M,Y i−1, V i−1) =I(V n−1

i ;Y i,M |V i−1)

− I(V n−1
i ;Y i−1,M |V i−1)

Now, we have two facts: i) Given V i−1, (Y i,M) is a deterministic function of (W i,M); ii) the

Markov chain V n−1
i − V i−1 − (M,W i) holds. Thus, the Markov chain V n−1

i − V i−1 − (Y i,M)

holds. Consequently,

I(V n−1
i ;Y i,M |V i−1) = I(V n−1

i ;Y i−1,M |V i−1) = 0,

and, thus, I(V n−1
i ;Yi|M,Y i−1, V i−1) = 0.

Proceed the above derivation, we have

I(Xn → Y n||V n−1)

=
n∑
i=1

I(M,V n−1
i ;Yi|Y i−1, V i−1)

=
n∑
i=1

I(M ;Yi|Y i−1, V n−1) + I(V n−1
i ;Yi|M,Y i−1, V i−1)



www.manaraa.com

119

The second term is zero due to the fact that

I(V n−1
i ;Yi|Y i−1, V i−1) = I(V n−1

i ;Y i|V i−1)− I(V n−1
i ;Y i−1|V i−1)

and

I(V n−1
i ;Y i−1|V i−1) ≤ I(V n−1

i ;Y i|V i−1) ≤ I(V n−1
i ;Y i,M |V i−1) = 0.

where the last equality follows from (C). Therefore, we obtain

I(Xn → Y n||V n−1)

=
n∑
i=1

I(M, ;Yi|Y i−1, V n−1)

=

n∑
i=1

h(Yi|Y i−1, V n−1)− h(Yi|M,Y i−1, V n−1)

=
n∑
i=1

h(Yi|Y i−1, V n−1)− h(Yi|M,Y i−1, Xi(M,Y i−1 + V i−1), V n−1)

(a)
=

n∑
i=1

h(Yi|Y i−1, V n−1)− h(Yi|Y i−1, Xi, V n−1)

=I(Xn → Y n|V n−1)

where line (a) follows from the channel causality.

Proof of Proposition 54

Let Hn = (In + Bn)Kw,n(In + Bn)T + Ks,n + BnKv,nB
T
n , we have

1

2
log

det ((In + Bn)Kw,n(In + Bn)T + Ks,n)

det Kw,n

=
1

2
log

det (Hn −BnKv,nB
T
n )

det Kw,n
.

Next,

tr(Kx,n) ≤ nP ⇔ tr(Ks,n + Bn(Kv,n + Kw,n)BT
n ) ≤ nP

⇔ tr(Hn −Kw,nB
T
n −BnKw,n −Kw,n) ≤ nP.

By applying the Schur complement, we have the following equivalences.

1.

det

K−1
v,n BT

n

Bn Hn

 = det(Hn −BnKv,nB
T
n ) det K−1

v,n.
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2.

Ks,n ≥ 0⇔ Hn − (In + Bn)Kw,n(In + Bn)T −BnKv,nB
T
n ≥ 0

⇔


Hn In + BT

n BT
n

In + Bn K−1
w,n 0n

Bn 0n K−1
v,n

 ≥ 0

By taking simple replacements on the original formula, the proof is complete.

Proof of Proposition 55

According to ?), we apply interior-point algorithms to solve this LMI problem, which have

a polynomial-time complexity. In particular, the number of operations to obtain a δ-accurate

solution is upper bounded by

MN3 log(
V

δ
)

where M is the total row size of the LMI system, N is the total number of scalar decision

variables, and V is a data-dependent scaling factor. In Corollary 54, we have M = 3n+ 1 and

N = 3
2n

2 − 1
2n. The result is then straightforward to obtain.

Proof of Theorem 58

As the proof follows the same approach in Kim (2010), we herein streamline the proof and

concentrate on the main difference. Define C̃noisyfb as formula (5.13). By the Szegö-Kolmogorov-

Krein theorem, we have

C̃noisyfb = sup
{Xi}−stationary

h(Y|V)− h(W)

where the supremum is taken over all stationary Gaussian process {Xi}∞i=−∞ of the form Xi =

Si+
∑

k bk(Wi−k+Vi−k) where {Si}∞i=−∞ is stationary and independent of ({Wi}∞i=−∞,{Vi}∞i=−∞)

such that E[X2
i ] ≤ P .

We first show that

C̄noisyfb,n ≤ C̃
noisy
fb (C.2)
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for all n. Fix n and assume (K∗s,n,B
∗
n) achieves C̄noisyfb,n . Consider a block-wise white process

{Si}(k+1)n
i=kn+1, −∞ ≤ k < ∞, independent and identically distributed according to Nn(0,K∗s,n).

By following the steps in the proof of Lemma 59, it is straightforward to have

C̄noisyfb,n ≤
1

kn
(h(Y kn

1 |V kn−1
1 )− h(W kn

1 ))

for all k. Next, we use the same technical skill from Kim (2010) to show the inequality

(C.2). Define the time-shifted process {Xi(t)}∞i=−∞ where Xi(t) = Xi+t. Similarly define

{Yi(t)}∞i=−∞, {Wi(t)}∞i=−∞ and {Vi(t)}∞i=−∞. Introduce a random variable T , uniformly dis-

tributed over {1, 2, 3, · · · , n} and independent of everything else. Then it is easy to check that

{Xi(T ), Yi(T ),Wi(T ), Vi(T )}∞i=−∞ is jointly stationary. Next, we define {X̃i, Ỹi, W̃i, Ṽi}∞i=−∞ as

a jointly Gaussian process with the same mean and autocorrelation as the stationary process

{Xi(T ), Yi(T ),Wi(T ), Vi(T )}∞i=−∞. Thus,

C̄noisyfb,n ≤
1

kn
(h(Y kn

1 (T )|V kn−1
1 (T ), T )− h(W kn

1 (T )|T ))

(a)
=

1

kn
(h(Y kn

1 (T )|V kn−1
1 (T ), T )− h(W kn

1 ))

≤ 1

kn
(h(Y kn

1 (T )|V kn−1
1 (T ))− h(W kn

1 ))

=
1

kn
(h(Ỹ kn

1 |V kn−1
1 )− h(W kn

1 ))

where (a) follows from the stationarity assumption on {Wi}∞i=1. Taking k →∞, we obtain

C̄noisyfb,n ≤ h(Ỹ|V)− h(W) ≤ C̃noisyfb

We now show the main idea of proving the other direction. Given ε > 0, we let {X̃i}∞i=−∞

achieve C̃noisyfb − ε. Define the corresponding channel outputs as {Ỹi}∞i=−∞. Then,

lim inf
n→∞

C̄noisyfb,n = lim inf
n→∞

max
{Xi}ni=1

1

n
(h(Y n

1 |V n−1
1 )− h(Wn

1 ))

≥ lim inf
n→∞

1

n
(h(Ỹ n

1 |V n−1
1 )− h(Wn

1 ))

= lim
n→∞

1

n
(h(Ỹ n

1 |V n−1
1 )− h(Wn

1 ))

=h(Ỹ|V)− h(W)

=C̃noisyfb − ε
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Taking ε → 0, we obtain lim infn→∞ C̄
noisy
fb,n ≥ C̃noisyfb . The technical discussion on power

constraint is identical to that in Kim (2010), so it is omitted here. Combined with inequality

(C.2), we know that the limit of Cnoisyfb,n exists and limn→∞ C̄
noisy
fb,n = C̃noisyfb .

Proof of Lemma 59

First of all, we need the following lemma.

Lemma 96 Consider the CP-like coding scheme as shown in Fig.5.2,

I(Sn;Y n|V n) = I(Xn → Y n|V n−1) = h(Y n|V n−1)− h(Wn)

Proof.

I(Sn;Y n|V n)

=h(Y n|V n)− h(Y n|Sn, V n)

(a)
=h(Y n|V n−1)− h(Y n|Sn, V n)

=h(Y n|V n−1)− h(Sn + (In + Bn)Wn + BnV
n|Sn, V n)

(b)
=h(Y n|V n−1)− h((In + Bn)Wn)

=h(Y n|V n−1)− h(Wn)

where line (a) follows from the fact that Y n does not depend on the feedback noise Vn due to

the single step feedback delay. Line (b) follows from the fact that (Sn,Wn, V n) are mutually

independent. From Theorem 49, we have

I(Xn → Y n|V n−1) = h(Y n|V n−1)− h(Wn).

The proof is complete.

We next present the necessary supper-additive lemma below, the proof of which can be

found in Appendix 4A ?).

Lemma 97 (Supper-additive Sequence) Let aN , N = 1, 2, · · · ,∞ be a bounded sequence of

numbers. Assume that, for all 1 ≤ n < N ,

nan + (N − n)aN−n ≤ NaN ,
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then

lim
N→∞

aN = sup
N
aN .

Based on this result, we need to show that the upper bound C̄noisyfb,n on the n-block capacity is

super-additive, namely,

nC̄noisyfb,n +mC̄noisyfb,m ≤ (n+m)C̄noisyfb,n+m (C.3)

for all n,m ≥ 1. Now we present the proof of Lemma 59 as follows. Proof. Fix n

and assume (K∗s,n,B
∗
n) achieves C̄noisyfb,n . Similarly, fix m and assume (K∗s,m,B

∗
m) achieves

C̄noisyfb,m . Consider a process {Si}n+m
i=1 that is independent of {Wi}∞i=1 and {Vi}∞i=1, and block-

wise white with {Si}ni=1 ∼ Nn(0,K∗s,n) and {Si}n+m
i=n+1 ∼ Nm(0,K∗s,m), respectively. Now we

apply the CP-like scheme, which maximizes the n-block upper bound C̄noisyfb,n and C̄noisyfb,m , as

follows. Define a channel input process {Xi}n+m
i=1 as Xn

1 = Sn1 + B∗n(Wn
1 + V n

1 ) and Xn+m
n+1 =

Sn+m
n+1 + B∗n(Wn+m

n+1 + V n+m
n+1 ). Then

nC̄noisyfb,n +mC̄noisyfb,m

=I(Xn
1 → Y n

1 |V n−1
1 ) + I(Xn+m

n+1 → Y n+m
n+1 |V

n+m−1
n+1 )

(a)
=I(Sn1 ;Y n

1 |V n
1 ) + I(Sn+m

n+1 ;Y n+m
n+1 |V

n+m
n+1 )

=h(Sn1 |V n
1 ) + h(Sn+m

n+1 |V
n+m
n+1 )− h(Sn1 |Y n

1 , V
n

1 )− h(Sn+m
n+1 |Y

n+m
n+1 , V n+m

n+1 )

(b)
=h(Sn1 |V n+m

1 ) + h(Sn+m
n+1 |V

n+m
1 )− h(Sn1 |Y n

1 , V
n

1 )− h(Sn+m
n+1 |Y

n+m
n+1 , V n+m

n+1 )

(c)
=h(Sn+m

1 |V n+m
1 )− h(Sn1 |Y n

1 , V
n

1 )− h(Sn+m
n+1 |Y

n+m
n+1 , V n+m

n+1 )

≤h(Sn+m
1 |V n+m

1 )− h(Sn+m
1 |Y n+m

1 , V n+m
1 )

=I(Sn+m
1 ;Y n+m

1 |V n+m
1 )

(d)
=h(Y n+m

1 |V n+m−1
1 )− h(Wn+m

1 )

(e)

≤(n+m)C̄noisyfb,n+m

where line (a) and line (d) follow from Lemma 96. Line (b) and (c) follows from the block-wise

white process construction. Line (e) follows from formula (5.11). Note that if K∗s,n or K∗s,m
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is singular and thus h(Sn1 |V n
1 ) or h(Sn+m

n+1 |V
n+m
n+1 ) is ill-defined, we may apply the trick in the

achievability proof of the Cover-Pombra theorem Cover and Pombra (1989), i.e., consider a

sequence of nonsingular K∗s,n or K∗s,m that respectively achieves C̄noisyfb,n or C̄noisyfb,m in the limit.

Proof of Lemma 60

Proof. We start with the supper-additive result as shown in the proof of Lemma 59,

nC̄noisyfb,n +mC̄noisyfb,m ≤ (n+m)C̄noisyfb,n+m

for all n,m ≥ 1.

By taking m = n, we have C̄noisyfb,n ≤ C̄
noisy
fb,2n . Then it is straightforward to obtain

3C̄noisyfb,n ≤ C̄
noisy
fb,n + 2C̄noisyfb,2n ≤ 3C̄noisyfb,3n

That is, C̄noisyfb,n ≤ C̄noisyfb,3n . By repeating the above process, we have C̄noisyfb,n ≤ C̄noisyfb,kn for all

k ≥ 1.

Next, define ∆k = C̄noisy
fb,2k+1n

− C̄noisy
fb,2kn

. According to the result above, we clearly have

∆k ≥ 0. In addition,

lim
T→∞

T∑
k=1

∆k = lim
T→∞

C̄noisy
fb,2T+1n

− C̄noisyfb,2n

=C̄noisyfb − C̄noisyfb,2n <∞.

where the last line follows from Lemma 59. Therefore, limk→∞∆k = 0.

Proof of Lemma 66

As C � B � 0 and A � 0, it is straightforward to have det B−1 ≥ det C−1, and thus

det (B−1A + I) ≥ det (C−1A + I).
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Then it is equivalent to have

det C

det B
≥ det C det (C−1A + I)

det B det (B−1A + I)

⇔det C

det B
≥ det (A + C)

det (A + B)

⇔det (A + B)

det B
≥ det (A + C)

det C

⇔ log
det (A + B)

det B
≥ log

det (A + C)

det C

Proof of Lemma 69

The proof directly follows from the proof of Lemma 59 by carefully replacing the conditional

directed information I(Xn
1 → Y n

1 |V n
1 ) by the directed information I(Xn

1 → Ỹ n
1 ) on the new

noiseless feedback Gaussian channel. For completeness and reader’s convenience, we present

the proof as follows. Remember that the n-block lower bound is obtained by solving n-block

capacity of Gaussian channel with noiseless feedback where the Gaussian noise W̃i = Wi + Vi

(as shown in Fig. 5.5, right). According to Theorem 61, it is known that Cover-Pombra(CP)

scheme can be applied to achieve this n-block noiseless feedback capacity. Then, we have

I(Sn; Ỹ n) =h(Ỹ n)− h(Ỹ n|Sn)

=h(Ỹ n)− h(Sn + (In + Bn)W̃n|Sn)

(a)
=h(Y n)− h((In + Bn)W̃n)

=h(Ỹ n)− h(W̃n)

(C.4)

where line (a) follows from the fact that W̃n = Wn + V n, and random variables (Sn,Wn, V n)

are mutually independent.

Now we fix n and assume (K∗s,n,B
∗
n) achieves Cnoisyfb,n . Similarly, fixm and assume (K∗s,m,B

∗
m)

achieves Cnoisyfb,m . Consider a process {Si}n+m
i=1 that is independent of {Wi}∞i=1 and {Vi}∞i=1,

and block-wise white with {Si}ni=1 ∼ Nn(0,K∗s,n) and {Si}n+m
i=n+1 ∼ Nm(0,K∗s,m), respec-

tively. Now we apply the CP scheme, which maximizes the n-block lower bound Cnoisyfb,n

and Cnoisyfb,m , as follows. Define a channel input process {Xi}n+m
i=1 as Xn

1 = Sn1 + B∗nW̃
n and

Xn+m
n+1 = Sn+m

n+1 + B∗nW̃
n+m
n+1 . Start with Remark 63, we have
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nCnoisyfb,n +mCnoisyfb,m

=h(Ỹ n
1 )− h(W̃n

1 ) + h(Ỹ n+m
n+1 )− h(W̃n+m

n+1 )

(a)
=I(Sn; Ỹ n)− I(Sn+m

n+1 ; Ỹ n+m
n+1 )

=h(Sn1 ) + h(Sn+m
n+1 )− h(Sn1 |Ỹ n

1 )− h(Sn+m
n+1 |Ỹ

n+m
n+1 )

(b)
=h(Sn+m

1 )− h(Sn1 |Ỹ n
1 )− h(Sn+m

n+1 |Ỹ
n+m
n+1 )

≤h(Sn+m
1 )− h(Sn+m

1 |Ỹ n+m
1 )

=I(Sn+m
1 ; Ỹ n+m

1 )

(c)
=h(Ỹ n+m

1 )− h(W̃n+m
1 )

≤(n+m)Cnoisyfb,n+m

Line (a) and (c) follow from equality (C.4). Line (b) follows from the block-wise white process

construction. Similarly, if K∗s,n or K∗s,m is singular and thus h(Sn1 |V n
1 ) or h(Sn+m

n+1 |V
n+m
n+1 ) is ill-

defined, we may apply the trick in the achievability proof of the Cover-Pombra theorem Cover

and Pombra (1989), i.e., consider a sequence of nonsingular K∗s,n or K∗s,m that respectively

achieves C̄noisyfb,n or C̄noisyfb,m in the limit. According to Lemma 97, the property of supper-additive

sequence, the proof is complete.
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APPENDIX D. PROOFS OF RESULTS IN CHAPTER 6

Proof of Lemma 77

Let A = {(m, zn, yn) : PM,Zn,Y n(m|zn, yn) ≤ Pm,yn(m|yn) exp (−nδ)}. For every δ > 0,

Pr{ 1

n
log

PM,Zn,Y n(M |Zn, Y n)

PM,Y n(M |Y n)
≤ −δ}

=
∑
A
PM,Zn,Y n(m, zn, yn)

=
∑
A
PM |Zn,Y n(m|zn, yn)PZn,Y n(zn, yn)

≤
∑
A
PM |Y n(m|yn)PZn,Y n(zn, yn) exp (−nδ)

≤
∑

m,zn,yn

PM |Y n(m|yn)PZn,Y n(zn, yn) exp (−nδ)

≤ exp (−nδ)

The probability goes to zero as n→∞. Hence, we must have I(M,Zn−1|Y n) ≥ 0. By Lemma

71 and Fano’s inequality,

I(M,Zn−1|Y n) ≤ lim inf
n→∞

1

n
I(M,Zn−1|Y n) ≤ lim inf

n→∞
δn.

where δn → 0 as n→∞.



www.manaraa.com

128

APPENDIX E. PROOFS OF RESULTS IN CHAPTER 7

Proof of Theorem 85

Converse: We firstly have

i(Xn → Y n||Zn−1) =

n∑
i=1

log
p(Yi|Xi, Y i−1, Zi−1)

p(Yi|Y i−1, Zi−1)

=

n∑
i=1

log
p(Xi +Wi|Xi, Y i−1,W i−1, Zi−1)

p(Yi|Y i−1, Zi−1)

(a)
=

n∑
i=1

log
p(Wi|W i−1)

p(Yi|Y i−1, V i−1)

(b)
=

n∑
i=1

log
p(Wi|W i−1)

p(Yi|Y i−1, V n)

where (a) follows from Zi−1 = [g1(Y 1) +V1, g2(Y 2) +V2, · · · , gi−1(Y i−1) +Vi−1]T (gi represents

the operation of the feedback transmitter E2). Line (b) follows from the Markov chain V n
i −

(Y i−1, V i−1)−Yi. Therefore, we have I(Xn → Y n||Zn−1) = h(Y n|V n)−h(Wn). Now, consider

a sequence of (n, 2nRn) channel codes. By Fano’s inequality, we have

nRn =H(M)

=H(M |Y n, Zn−1) + I(M ; (Y n, Zn−1))

(a)
=I(Xn → Y n||Zn−1) + nδn

=h(Y n|V n)− h(Wn) + nδn

≤max
Xn

h(Y n|V n)− h(Wn) + nδn

where δn → 0 as n→∞. Line (a) follows from Theorem 82. Now, it is well known that Y n|V n

should be Gaussian to maximize h(Y n|V n). Thus Y n should be Gaussian as V n is assumed to

be Gaussian. Further we have Y n = Xn +Wn, then Xn must be Gaussian.

Because Xn causally depends on the noises Wn and V n, without loss of generality, the
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Figure E.1 Vector representation of the coding scheme (E.1) where En = Bn(In + DnBn)−1

and Fn = (In + BnDn)−1. Note that En is strictly triangular, capturing the

one-step feedback delay.

Gaussian channel inputs Xn can be constructed as

Xn = Sn + BnDnW
n + BnV

n (E.1)

where Sn ∼ N (0,Ks,n) is the message information vector. Bn is an n × n strictly lower

triangular linear matrix, capturing the one-step delay in the feedback channel. Dn is an n× n

lower triangular linear matrix. Remark that random variables Sn,V n,Wn are independent.

This linear coding scheme is specifically presented in Fig.E.1.

By applying Lemma 3 and putting above formulas together, we have Rn ≤ CFB,n+δn. The

converse thus is proved.

Achievability : As did in Cover and Pombra (1989), the achievability proof follows from the

standard random coding technique and AEP. Consider the coding scheme (E.1) where Ks,n,

Bn and Dn achieve CFB,n. Since Sn is the message information vector and only determined

by message index M , according to Theorem 82, it is easy to show

I(Sn; (Y n, Zn−1)) = I(Xn → Y n||Zn−1) = h(Y n|V n)− h(Wn). (E.2)

Let Ỹ n = (Y n, Zn−1) and (Sn, Ỹ n) be jointly distributed with density f(Sn, Ỹ n). Then the
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set Anε of jointly ε-typical (Sn, Ỹ n) is defined by

Anε =

{
| − 1

n
f(Sn)− 1

n
h(Sn)| ≤ ε, | − 1

n
f(Ỹ n)− 1

n
h(Ỹ n)| ≤ ε

| − 1

n
f(Sn, Ỹ n)− 1

n
h(Sn, Ỹ n)| ≤ ε

}
.

By Lemma 6 in Cover and Pombra (1989), we have the volume of Anε as

V (Anε ) ≤ 2(h(Sn,Ỹ n)+nε). (E.3)

Let Sn(1), Sn(2), · · · , Sn(2nR) be i.i.d. vectors drawn according to N (0,Ks,n)1. To send

message M , the transmitter sends out Xn = Sn(M) + BnDnW
n + BnV

n. The receiver then

declares M̂ was sent if (Sn(M̂), Ỹ n) is the only ε-typical pair. If there is no typical pair or

more than one such or M̂ 6= M , an error is declared. Assume M = 1 is sent and define

Ei : (Sn(i), Ỹ n) ∈ Anε .

and Eci , the complement of Ei. Then we have

P (n)
e ≤ Pr(Ec1|M = 1) + 2nRPr(E2|M = 1).

By AEP, the first term converges to zero as n→∞. Next,

Pr(E2|M = 1) =

∫
(sn,ỹn)∈Anε

f(sn)f(ỹn)dsndỹn

(a)

≤2(h(Sn,Ỹ n)−h(Sn)−h(Ỹ n)+3nε)

=2−I(S
n;(Y n,Zn−1))+3nε

(b)
=2−(h(Y n|V n)−h(Wn))+3nε

=2(−nCFB,n+3nε)

where (a) follows from (E.3) and (b) follows from equation (E.2). Putting above together,

we conclude that, for R < CFB,n − 3ε, there exists a sequence of (n, 2nR) channel codes with

P
(n)
e → 0 as n→∞.

1In this proof, Ks,n is assumed to be nonsingular such that the AEP will apply. We can use the trick in
Cover and Pombra (1989) to deal with the nonsingular case.
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Proof of Corollary 87

We show that the optimization problem (7.4) can be casted into the bilinear form (7.5).

Let

Yn = Ks,n + (In + BnDn)Kw,n(In + BnDn)T

= Ks,n + BnDnKw,nD
T
nBT

n + Kw,nD
T
nBT

n + BnDnKw,n + Kw,n

Then the power constraints and Ks,n ≥ 0 can be alternatively expressed as

tr(Yn −BnDnKw,n −Kw,nD
T
nBT

n −Kw,n + BnKv,nB
T
n ) ≤ nP1,

tr(DnYnD
T
n + DnBnKv,nB

T
nDT

n ) ≤ nP2,

Yn − (In + BnDn)Kw,n(In + BnDn)T ≥ 0.

By introducing dummy matrices Hn and Zn and then applying Schur complement decom-

position, it is straightforward to obtain the bilinear optimization (7.5).

Proof of Theorem 90

A). (Power Constraint) We show that the coding structure C satisfies the power constraints.

First of all, we derive two necessary results as follows. Let

g(x) = (1 + α2)x3 + 2αx2 − (1 + α2 + P1)x− 2α. (E.4)

It is straightforward to obtain g(1) = −P1, g(−1) = P1, g(+∞) = +∞, g(−∞) = −∞ and

g(−ri) = 4α(r2
i − 1),

where ri (i = 1, 2, 3) is the root of polynomial g(x) = 0. After some inference, we conclude

that all the three roots are real and r1 < −1 < r2 < 1 < r3. Furthermore, we have

|r1| < r3 for α < 0,

|r1| > r3 for α > 0,

|r1| = r3 for α = 0.
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Let A(ξi = 1) = −r (i = 0, 1, · · · , n) where r is the real root with the largest absolute value.

Then we have

αA−1(ξi = 1) ≥ 0. (Necessary Result 1) (E.5)

Furthermore, we can derive that

αB(ξi = 1) ≤ 0. (Necessary Result 2) (E.6)

Next, since A(ξi = 1) = −r is a real root of the polynomial g(x) = 0, we clearly have

(r2 − 1)g(r) = 0. After some algebra, we have

B2(ξi = 1) = (
1

r
− r)2 =

P1 − r−2P1

2αr−1 + 1 + α2
.

(Necessary Result 3) (E.7)

Now, we are ready to show that the coding structure C satisfies the power constraints P1

and P2.

Xn =A(ξn−1)Xn−1 +
1

g
B(ξn−1)ξn−1Un−1

=A(ξn−1)Xn−1 +
1

g
B(ξn−1)ξn−1gYn−1

=A(ξn−1)Xn−1 +B(ξn−1)ξn−1Yn−1

=(A(ξn−1) +B(ξn−1)ξn−1)Xn−1 +B(ξn−1)ξn−1Ũn−1 + αB(ξn−1)ξn−1Ũn−2.

Taking ξn−1 = 0 and 1, respectively, we can obtain

Xn = A−1(ξn−1)Xn−1 +B(ξn−1)Ũn−1 + αB(ξn−1)Ũn−2.

Then we have

E[XnŨn−1]

=E[(A(ξn−1)−1Xn−1 +B(ξn−1)Ũn−1 + αB(ξn−1)Ũn−2)Ũn−1]

=B(ξn−1)E[Ũ2
n−1]

=B(ξn−1)
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The average transmission power at time n is

E[X2
n]

=A−2(ξn−1)E[X2
n−1] + 2αA−1(ξn−1)B(ξn−1)B(ξn−2) +B2(ξn−1) + α2B2(ξn−1)

≤A−2(ξn−1)E[X2
n−1] + 2αA−1(ξn−1)B2(ξn−1) +B2(ξn−1) + α2B2(ξn−1)

=A−2(ξn−1)E[X2
n−1]−A−2(ξn−1)P1 + P1.

(E.8)

where the last two lines follow from the necessary results 1 and 3, respectively. Thus,

E[X2
n]− P1 ≤A−2(ξn−1)(E[X2

n−1]− P1)

≤
n−1∏
j=0

A−2(ξj)(E[X2
0 ]− P1)

Since A−2(1) = r−2 ≤ 1, we have E[X2
n] converges to P1 almost surely2 as n→∞. This implies

the time average of E[X2
n] is P1 as n→∞.

Now, we check the power constraint P2. That is,

E[U2
n] =g2E[Y 2

n ]

=g2E[(Xn + Ũn + αŨn−1)2]

=g2(E[X2
n] + 2αB(ξn−1) + 1 + α2)

≤g2(E[X2
n] + 1 + α2)

(E.9)

where the last inequality follows from the necessary result 2 the definition of B(ξ). Therefore,

E[U2
n]

a.s.
≤ g2(P1 + 1 + α2) ≤ P2, (E.10)

which implies the time average of E[U2
n] is less than P2.

B) (Decoding Error and Transmission Rate) We now investigate the probability of decoding

error and the transmission rate. According to the coding strategy C, it is easy to obtain

Xn−T+1 − X̃n =
n−T∏
j=0

A(ξj)(X0 − X̃T−1).

2Note {ξj}n−1
0 is a Bernoulli process with probability 1− e. By law of large number, we have for any ε > 0,

Pr(| limn→∞

∑n−1
j=0 ξj

n
− (1− e)| < ε) = 1. Such a sequence of {ξj}n−1

0 is defined as a “typical” sequence, which

then implies Pr(| limn→∞
∏n−1
j=0 a

−2(ξj)− 0| < ε) = 1. We herein are concerning typical sequences only and use

“almost sure” to capture events happening with probability 1.



www.manaraa.com

134

Then, with X̃T−1 = 0, we have

X̂0,n =

n−T∏
j=0

A(ξj)
−1X̃n =

n−T∏
j=0

A(ξj)
−1Xn−T+1 −X0.

For large n, X̂0,n has a distribution with mean −X0 and bounded variance

σ2
n =

n−T∏
j=0

A(ξj)
−2E[X2

n−T+1]
a.s.
= P1r

−2(1−e)(n−T+1).

Now, we equally partition the interval (−
√
P1,
√
P1) into Mn = σ

−(1−ε)
n (ε > 0) where the

center of each segment represents a message to be transmit. By Chebyshev’s inequality, we

have the probability of error (i.e. X0 and X̂0,n locate in different segments) as

Pe,n = Pr

(
|X̂0,n −X0| ≥

√
P1

σ
−(1−ε)
n−1

)
a.s.
≤ P

(ε−1)
1 r−2(1−e)ε(n−T+1).

This implies that the error probability decays at least exponentially. Besides, we see that the

error probability is also affected by the finite delay T . Finally, we have the transmission rate

R = lim
n→∞

logMn

n

= lim
n→∞

−(1− ε) log(
∏n−T
j=0 A(ξj)

−2E[X2
n−T+1])

2n

a.s.
= lim

n→∞

−(1− ε)
2n

(−(1− e)(n− T + 1) log(A2(1) + logP )

=(1− ε)(1− e) log(|r|).

(E.11)
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